

1322 WEBSTER STREET SUITE 208 OAKLAND, CA 94612 5 1 0 . 2 9 8 . 0 7 4 0 T 0 0 L E D E S I G N . C 0 M

### **MEMORANDUM**

November 10, 2023

To: Christopher Kidd Organization: SFMTA From: Mia Candy, Ellie Gertler, Ellie Fiore, Toole Design Project: San Francisco Active Community Plan

Re: San Francisco Active Communities Plan – Final Equity Analysis

### Introduction, Background, and Context

As part of the Active Communities Plan, the project team seeks to further understand inequities in San Francisco's Active Transportation Network and identify barriers to walking, biking, and rolling in Equity Priority Communities (EPCs). The project team is collecting quantitative and qualitative data to tell a cohesive story about transportation equity in San Francisco. This memorandum presents the *quantitative* equity data and is designed to be used in coordination with qualitative feedback provided during public outreach and EPC Community Workshops. This memorandum summarizes equity-related findings from the Network and Count Analysis, Collision Analysis, Resident Preference Survey (RPS), and Phase 2 Public Survey. To review the full analysis memoranda, including documentation of all data sources visit the project <u>analysis webpage</u>.

This memorandum focuses on, and is organized into, the following sections:

- Key Findings
- Current Bicycle and Micromobility Activity
- Network Coverage and Quality
- Traffic Safety and Enforcement
- Disability and Access
- Neighborhood Profiles for the Six Equity Priority Communities (EPCs)
- Next Steps

This memorandum is one part of the larger Equity Framework, which was vetted by the SFMTA's Office of Racial Equity and Belonging (OREB), the Active Communities Plan Technical Advisory Committee (TAC), and the project community partners. This document will be used in coordination with community workshops to:

- Identify and quantify barriers to bicycling, micromobility, and accessibility in EPCs;
- Identify community needs related to bicycling, micromobility, and accessibility; and
- Inform recommendations for network improvements, policies, and programs in EPCs.

Note: This memorandum consolidates data and graphics from multiple prior analyses and memoranda. As a result, there is some inconsistency in the formatting of figures, maps, and charts.

### **Key Findings**

This section documents key findings related to inequities in San Francisco's bicycle and micromobility activity and trends. To identify inequities, the project team compared trends within EPCs to citywide trends. Where data was available, we also documented differences between demographic groups.

### **Current Bicycle and Micromobility Activity**

- According to the Resident Preference Survey, people living in the EPCs, as well as Black, Indigenous, and People of Color (BIPOC) residents citywide, are less likely to use active transportation devices (bikes, scooters, one-wheels etc.) than San Franciscans in general, but are *more likely to use active transportation devices daily*. The data show that 12% of Black respondents reported using an e-bike daily, compared to just 3% citywide, but this statistic may have a high margin of error, given the small sample size.
- Among EPC residents, there is a greater perception that owning or renting a bike, scooter, or active transportation device is not affordable (22% of respondents feel this way, compared to 17% citywide).
- In addition, 40% of respondents who live in downtown (including SoMa/Tenderloin) report that they have had a bike or scooter stolen compared to just 29% citywide.
- BIPOC residents and those living in EPCs report that they use the Active Transportation Network in a more utilitarian manner than San Franciscans in general. More EPC respondents are using the network to run errands and commute than for recreation. This finding is consistent with the fact that EPC residents are making daily active transportation trips.
- According to citywide manual counters, between 2018 and 2022, bike and micromobility volumes fell by about a third. Activity in EPCs was consistent with this trend volumes fell in all EPCs in which there are counters, with Bayview-Hunters Point seeing the largest decline (96% from 2018 to 2022).
- Bicycle and micromobility volumes in EPCs are closely associated with the land use and density conditions in and around the neighborhood. For this reason, SoMa, the Mission District, Western Addition, and Tenderloin have some of the highest rates of bike commuting and micromobility use in the city. In some cases, these neighborhoods out-perform the city as a whole.
- In contrast, Bayview-Hunters Point and Outer Mission/Excelsior have some of the lowest rates of bike activity. Low bike commuting in the Outer Mission/Excelsior and Bayview-Hunters Point is likely also a result of land use patterns people live too far from their jobs to make biking an attractive option. In these same neighborhoods, bike commuting is low *even for households without cars*, suggesting that residents likely use transit as their primary commute mode.
- Some of the highest-volume micromobility corridors run through EPCs, including Market Street (Tenderloin and SoMa) with 900 trips per day, Valencia Street (Mission District) with 500 trips per day, and Polk Street (Tenderloin) with 400 trips per day.
- In contrast, micromobility ridership is low in the south and west of the city, despite Bay Wheels policies that specifically incentivize ridership in those service areas. For example, Bayview-Hunters Point has bikeshare stations and is within the designated service area but has a relatively low volume (less than 40 average daily rides).

### **Network Coverage and Quality<sup>1</sup>**

- Slow Street installation is not evenly distributed throughout the city, and there are fewer miles of Slow Streets in EPCs than the city as a whole. The physical distribution of Slow Streets across the city seems to have an impact on resident use and perception. According to the Resident Preference Survey, only a third of EPC residents have used a slow street, compared to more than half of residents citywide. EPC residents also report lower comfort levels on Slow Streets that San Franciscans at large. As part of the Active Communities Plan, SFMTA is working with EPCs to explore opportunities for and concerns about implementing Slow Streets in EPCs.
- Bike parking is concentrated in the city's dense, urban northeast: In the Tenderloin, SoMa, and Mission District EPCs bike parking is densely distributed. In other EPCs, bike parking is concentrated along neighborhood commercial corridors, with little available on residential streets.
- Results from the Resident Preference Survey indicate that EPC residents report being less aware of safe places to store their active transportation devices (35%) than San Franciscans in general (41%).
- The project team measured *network coverage* as the percent of street centerline miles that have bike facilities. Citywide, network coverage is 24%. EPCs that overlap with San Francisco's dense, urban center have high network coverage, including SoMa (36%), the Mission District (30%), and Tenderloin (28%). In contrast, network coverage is relatively low in low-density neighborhoods such as Excelsior (9%). Western Addition/Fillmore has relatively low network coverage (19%), despite being located in the city's dense northeast quadrant.
- The project team measured *high-quality network coverage* as the percent of street centerline miles that have Slow Streets, Class I Paths, or Class IV Bike Lanes. Of the EPCs, SoMa has the highest share (22%) of centerline miles with high-quality facilities. This far exceeds the citywide average of 8%. Bayview-Hunters Point and Outer Mission/Excelsior have lower-than-average quality network coverage. Western Addition/Fillmore has *zero* high-quality facilities there are no separated bikeways, bike paths, slow streets, or car-free streets within the formal neighborhood boundaries.

### **Network Comfort<sup>1</sup>**

- In the six EPCs studied, existing network facilities tend to have low to moderate Bicycle Comfort Index scores. Exceptions to this rule include Shotwell Slow Street in the Outer Mission ("very high" comfort) and the Class II and Class III facilities on Steiner Street, McAlister Street, and Fulton Street in the Western Addition (which score "high"). In Bayview-Hunters Point, the sections of Hunters Point Boulevard and Bayshore Boulevard that have Class IV Protected Lanes also score "high" on the BCI scale.
- People living in EPCs have very similar preferences about facility type as those living in non-EPC neighborhoods. San Franciscans-whether living in an EPC or not-seem to agree that the most comfortable facilities are those with physical protection from vehicles, including Class IV Bike Lanes and Car-Free Streets.
- There is also agreement that the least comfortable conditions are streets where bikes and cars share the same lane, and on busy commercial or transit streets.

<sup>&</sup>lt;sup>1</sup> The data presented in this section is based on the <u>June 2023 Network Analysis</u>. The analysis is based on the January 2023 network, which was the most recent network data available at the time of analysis. Facilities constructed since January 2023 are not included in this analysis.

- Despite this consistency, the data also show that, overall, people living in EPCs have slightly lower levels of comfort on all Active Transportation Network facility types. In EPCs, 25% of respondents reported feeling uncomfortable on, or unable to use, the ATN, compared to 20% citywide.
- Higher rates of discomfort were reported by people with disabilities (26% feel uncomfortable), older adults (25% of men over 50 and 30% of women over 50), and people identifying as Asian or Pacific Islander (AAPI 23%).

### **Traffic Safety and Enforcement**

- Black bicyclists and drivers are substantially overrepresented in crashes. Census data show that Black
  residents make up 5% of San Francisco's population but accounted for 9.6% of all bicycle crash victims
  and 8.6% of fatal and serious injury (KSI) bike victims, pre-pandemic. During the pandemic, these figures
  rose Black bicyclists were involved in 11% of all bike crashes and 11.5% of KSI bike crashes.
- Between 2017 and 2021, slightly more than half (55.2%) of the total reported bicyclist and micromobility crashes occurred outside of EPCs. These crashes also tended to be more severe than the crashes within EPCs.
- As expected, bicyclist and micromobility crashes throughout San Francisco are concreted along the High Injury Network (HIN): 67% of all crashes and 62.3% of KSI crashes occur on the HIN. This concentration is more pronounced in EPCs: In EPCs, nearly 81% of all crashes and 80% of KSI crashes occurred along the HIN.
- Consistent with citywide crash violations, the top three reported violations for KSI crashes within EPCs include *unsafe speed for conditions* (26.5%), *disregard red signal* (11.2%), *and unsafe turn or lane change* (10.2%).
- Citations for both bike and scooter-related incidents are concentrated in high-density, high-volume neighborhoods, which overlap with the Tenderloin, SoMa, and Mission District EPCs.
- As part of the Phase 2 Public Survey, almost 74% of respondents (n = 1120) said they would like to see better behavior and safety habits by road users. As part of this response, roughly 80% (n = 882) of participants said that traffic enforcement is a high priority. Notably, among BIPOC respondents, that percent is lower at 74%.

### **Disability and Access**

- Overall, people with disabilities are less comfortable on the Active Transportation Network than San Franciscans overall: 26% of people with disabilities report being uncomfortable on or unable to use the network, compared to just 20% citywide.
- In general, people with disabilities prefer to use facilities that provide some protection from cars this is consistent with citywide preferences. Compared to citywide preferences, people with disabilities report higher levels of comfort on separated bike lanes and slow streets.
- According to Resident Preference Survey results, people with disabilities report higher rates of theft of their active transportation devices that San Franciscans at large (43% compared to just 25% citywide). Note that this statistic may have a high margin of error, given the small sample size.
- People with disabilities are less likely to be aware of safe places in San Francisco to park a bike, scooter, or other mobility device (just 33% report knowing of safe parking spaces, compared to 43% citywide).
- People with disabilities are also less likely to agree that owning or renting a bike, scooter, or other active transportation device is affordable in San Francisco (44% agree, compared to 48% citywide).

### **Current Bicycle and Micromobility<sup>2</sup> Activity**

# Key Question: Are there measurable differences in bike and micromobility activity between EPCs and other San Francisco neighborhoods? Are there differences in activity between different demographic groups?

To analyze bicycle and micromobility activity, the project team used data from the Network and Count Analysis, the Resident Preference Survey (RPS), and the Phase 2 Public Survey. Data sources include the 2021 American Community Survey (ACS) 5-Year Estimates, the city's 22 electronic bike counters, manual counts on 25 Slow Streets and at 13 quick-build locations, micromobility data from the service providers (Bay Wheels [Lyft], Lime, Bird, and Spin), and volume estimates from Replica, an activity-based travel demand model.

## What active transportation devices are being used, how frequently, and how are different groups and neighborhoods using them?

As part of the RPS, the project team asked respondents how frequently they use active transportation devices, including bicycles (electric and manual); scooters (electric and manual); assisted mobility devices (such as powerchairs), and skateboards, one-wheels, or hoverboards. Compared to the city at large, residents living in Equity Priority Communities (EPCs) have lower rates of active transportation device usage (34% in EPCs compared to 47% citywide). However, the data on *daily* usage tells a different story: in EPCs, 5% of residents report using a bicycle every day, compared to 4% citywide. Daily usage of scooters, skateboards, e-bikes and other micromobility is very similar in EPCs to the city at large. Similarly, while white respondents report more use of active transportation devices overall, Black respondents report more *daily* usage rates of all modes except walking. The data shows that 12% of Black respondents reported using an e-bike daily, compared to just 3% citywide, but this statistic may have a high margin of error, given the small sample size. The fact that Black respondents use *almost all modes* more on a daily basis, including driving and taking transit, suggests that this demographic group may have commitments that require daily travel outside of the home at a greater rate than other demographic group may have commitments that require daily travel outside of the home at a greater rate than other demographic group may have commitments that require daily travel outside of the home at a greater rate than other demographic group may have commitments that require daily travel outside of the home at a greater rate than other demographic group may have commitments that require daily travel outside of the home at a greater rate than other demographic group may have commitments that require daily travel outside of the home at a greater rate than other demographic group may have commitments that require daily travel outside of the home at a greater rate than other demographic group may have commitm

|                     |          |      |                             | Race/ Ethnicity |       |               |       |       |
|---------------------|----------|------|-----------------------------|-----------------|-------|---------------|-------|-------|
| Device/ Mode        | Citywide | EPCs | People with a<br>Disability | AAPI            | Black | His./<br>Lat. | Other | White |
| Bike (Manual)       | 4%       | 5%   | 6%                          | 2%              | 6%    | 6%            | 5%    | 4%    |
| Bike (Electric)     | 3%       | 3%   | 5%                          | -               | 12%   | 3%            | 6%    | 4%    |
| Scooter (Manual)    | 3%       | 2%   | 5%                          | 1%              | 8%    | 1%            | 1%    | 5%    |
| Scooter (Electric)  | 3%       | 3%   | 6%                          | 1%              | 7%    | 3%            | 5%    | 5%    |
| Other Micromobility | 2%       | 1%   | 7%                          | -               | 9%    | 3%            | 1%    | 4%    |
| Transit             | 22%      | 38%  | 27%                         | 20%             | 31%   | 26%           | 14%   | 21%   |
| Walk                | 56%      | 56%  | 53%                         | 48%             | 49%   | 65%           | 56%   | 60%   |
| Drive               | 22%      | 21%  | 18%                         | 20%             | 31%   | 26%           | 14%   | 21%   |

#### Table 1: <u>Daily</u> Active Transportation Device Use (Source: Active Communities Plan Resident Preference Survey)

*Highlighted figures are 3%+ greater or lower than citywide average.* 

<sup>&</sup>lt;sup>2</sup> The Bay Area's Metropolitan Transportation Commission (MTC) <u>defines micromobility</u> as "ways of getting around that are fully or partially human-powered — such as bikes, e-bikes and e-scooters and mobility-assistance devices/wheelchairs. Most commonly, micromobility vehicles do not exceed 15mph." Other micromobility devices that are common in San Francisco are skateboards, electric skateboards, and one-wheels.

What trip types is the Active Transportation Network used for, and how do trip types differ between demographic groups and neighborhoods?

### **Bicycle Commuting**

Bike commuting in San Francisco is concentrated in the city's dense urban center, near Downtown and the Financial District, and is likely due to the density and proximity between people, housing, and jobs, relatively flat topography, and proximity to bike facilities. The project team found that EPCs in and around the city center (SoMa, Mission, Western Addition, and Tenderloin) had higher rates of bike commuting than the city as a whole (greater than 3.1%). Relatively low bike commuting in the Outer Mission/Excelsior and Bayview-Hunters Point is likely a result of land use patterns - people live too far from their jobs to make biking an attractive option. In these same neighborhoods, bike commuting is low even for households without cars, suggesting that residents likely use transit as their primary commute mode<sup>3</sup>. Figures 1 and 2 show that there is no direct correlation between low vehicle ownership and high bike commute rates, except where overall density makes bike commuting easy and attractive.

Compared to the city at large, Hispanic/ Latino/a/x respondents are more likely to say that they would use the Active Transportation Network (ATN) to go to work or school. While 42% of all survey respondents say they use the ATN to go to work – this figure is 56% amongst Hispanic/Latino/a/x respondents. While only 14% of survey respondents say they use the ATN to go to school, this figure is 28% amongst Hispanic/ Latino/a/x respondents. More broadly, residents of the six EPCs report using the Active Transportation Network in a more utilitarian manner than San Franciscans in general. More EPC respondents are using the network to go to work, go to school, or to run errands than for exercise or recreation (See Figure 3). This is consistent with the data that shows BIPOC residents are more likely to use active transportation devises on a daily basis than San Franciscans at large.

### Figure 1: 2021 Bike Commute Mode Share

0% - 1.7%

### Percent Zero Car Households (%) **Equity Priority Communities Equity Priority Communities** Percent Commute by Bike (%) Above 47% 10.61% - 20% 28.8% - 46.9% 6.41% - 10.6% 18.1% - 28.7% 3.81% - 6.4% 11.3% - 18% 1.71% - 3.8% 0% - 11.2%

Figure 2: 2021 Zero Vehicle Households

<sup>3</sup> Census data captures only the primary commute mode. Intermodal trips – such as trips by residents who bike and the take bus in one trip – are not reflected in the analysis.



#### Figure 3: Active Transportation Network Trip Purpose: Citywide vs EPCs (Source: ACP Resident Preference Survey)

### Bicycle and Micromobility Activity Combined – All Trip Purposes

To measure overall bicycle and micromobility activity, the project team used data from 22 manual bike counters, bike volume counts for 25 slow streets (collected during 2022), bike volume counts for 13 streets before and after quick-build installations, and estimated volumes from Replica, an activity-based travel demand model.

According to the manual bike counters, between 2018 and 2022, bike and micromobility volumes fell by about a third. Bike activity in EPCs was consistent with this trend – volumes fell in all EPCs in which counters exist, with Bayview-Hunters Point seeing the largest decrease of 96%. This is in stark contrast to non-EPC neighborhoods in the Richmond, Sunset, Potrero Hill, and Russian Hill, where bike activity increased by 120%.

The city also tracks bike activity on Slow Streets, which provides an indication of how Slow Streets are performing in different neighborhoods, including EPCs. Slow Street installation is not evenly distributed throughout the city, and there are fewer miles of Slow Streets in EPCs than the city as a whole. The highest-volume Slow Streets (Clay Street, Lake Street, and Page Street) are outside of EPCs, except for Shotwell Street in the Mission. Slow Streets in the Outer Mission/ Excelsior and Bayview-Hunters Point are amongst the lowest volume Slow Streets, which may be due to land use and overall density in the area.

The physical distribution of Slow Streets across the city seems to have an impact on resident use and perception. According to the Resident Preference Survey, only a third of EPC residents have used a Slow Street (32%), compared to more than half of residents citywide (51%). EPC residents also report slightly lower comfort levels on Slow Streets that San Franciscans overall (EPCs have a mean comfort score of 3.51 out of 5 on Slow Streets compared to a citywide mean comfort score of 3.62 out 5).

#### Table 2: Self-Reported Slow Street Use and Comfort (Source: ACP Resident Preference Survey)

| Slow Street Performance Metric                                                                                                           | Citywide | EPCs |
|------------------------------------------------------------------------------------------------------------------------------------------|----------|------|
| Percent of residents who report having walked, biked, or rolled on one of San Francisco's designated Slow Streets                        | 51%      | 32%  |
| Self-reported level of comfort using San Francisco's Slow Streets. Comfort is scored on a scale from 1 (low comfort) to 5 (high comfort) | 3.62     | 3.51 |

### Micromobility Activity

The project team measured micromobility using data provided by service providers including Lyft (Bay Wheels), Lime, Bird, and Spin. Figure 4 illustrates volumes in relation to EPC Boundaries. Micromobility activity is concentrated in the northeast area of the city, especially in Downtown and the Financial District, and is particularly high along key commercial corridors and in dense urban areas. Micromobility activity is low in the southern portion of the city. Specific streets with high micromobility ridership include:

- Market Street (Tenderloin and SoMa EPCs) approximately 900 trips per day
- Valencia Street (Mission EPC) approximately 500 trips per day
- Polk Street (Tenderloin EPC) approximately 400 trips per day
- Embarcadero approximately 1,800 trips per day

These specific areas likely see higher rates of micromobility use due to the density of people, jobs, and destinations, and because they offer direct and convenient links between destinations. Micromobility ridership is low in the south and west of the city, despite Bay Wheels policies that specifically incentivize ridership in those service areas<sup>4</sup>. For example, Bayview-Hunters Point has bikeshare stations and is within the designated service area but has a relatively low volume of less than 40 average daily rides. Low ridership is likely due, in part, to relatively low network coverage in these neighborhoods, as well as land use patterns – destinations are further away and require longer trips, making micromobility a less attractive option to residents.

Micromobility use is also associated with quality of network facilities. Facilities with protection from cars – protected bike lanes – have the highest ridership per centerline mile than any other facility type. Ridership per centerline mile increases as protection from cars increases. This suggests that upgrading and improving network coverage and facilities could lead to higher rates of micromobility use.

#### Figure 4: Micromobility Activity and Equity Priority Communities



<sup>4</sup> Bay Wheels policy incentivizes ridership in the south and east of San Francisco via two incentive structures: 1) In south and west services areas, there is no penalty for parking the bike outside of a docking station. 2) In Outer Richmond, Hunters Point and other select neighborhoods, the per-minute price is capped at \$2 for members. Maps of the incentive pricing are available in the <u>Network Analysis</u> <u>Memorandum</u>.

### **Network Coverage and Quality**

## Key Question: Are there measurable differences in network coverage and quality between EPCs and other San Francisco neighborhoods?

### How does network coverage differ between EPCs and the city at large?

The project team measured *network coverage* as the percent of street centerline miles<sup>5</sup> that have bike facilities. Citywide, network coverage is 24%. EPCs that overlap with San Francisco's dense, urban center have high network coverage, including SoMa (36%), the Mission (30%), and Tenderloin (28%). In contrast, network coverage is relatively low in low-density neighborhoods such as Excelsior (9%). Western Addition/Fillmore has relatively low network coverage (19%), despite being located in the city's dense northeast quadrant.

|                            | Network Coverage                                       | Network Quality                                                 |                                            |  |
|----------------------------|--------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------|--|
| Neighborhood*              | Percent of Centerline<br>Miles with Bike<br>Facilities | Percent of Centerline<br>Miles with High-<br>Quality Facilities | Percent of Network that is<br>High-quality |  |
| Citywide Average           | 24%                                                    | 8%                                                              | 28%                                        |  |
| Bayview-Hunters Point      | 23%                                                    | 5%                                                              | 21%                                        |  |
| Outer Mission/             | 32%                                                    | 7%                                                              | 21%                                        |  |
| Excelsior                  | 9%                                                     | 2%                                                              | 16%                                        |  |
| Mission District           | 30%                                                    | 8%                                                              | 28%                                        |  |
| SoMa                       | 36%                                                    | 22%                                                             | 61%                                        |  |
| Tenderloin                 | 28%                                                    | 10%                                                             | 38%                                        |  |
| Western Addition/ Fillmore | 19%                                                    | 0%                                                              | 0%                                         |  |

#### Table 1: Network Coverage and Network Quality Citywide vs. Equity Priority Communities

### How does network quality differ between EPCs and the city at large?

The project team measured *high-quality network coverage* as the percent of street centerline miles that have slow streets, Class I Paths, or Class IV Bike Lanes. High-quality facilities generally provide a more comfortable experience for users than pavement markings. Of the EPCs, SoMa has the highest share (22%) of centerline miles with high-quality facilities. This far exceeds the citywide average of 8%. Bayview-Hunters Point and Outer Mission/Excelsior have lower than average quality network coverage. Western Addition/Fillmore has *zero* high-quality facilities – there are no separated bikeways, bike paths, slow streets, or car-free streets within the formal neighborhood boundaries. Quality network coverage in each EPC is visualized in Figure 4.

<sup>&</sup>lt;sup>5</sup> Centerline miles measure the length of a street, in miles, regardless of the number of lanes or the direction of travel. A one-mile street with one lane of traffic in each direction is one centerline mile. In contrast, "lane miles' measures the total mileage of all lanes on a street. A one-mile street with one lane of traffic in each direction (ie two total lanes) is two lane miles.

Figure 4: High-Quality Facilities and Project Equity Priority Community Boundaries\*



\*Note: This map shows the six Equity Priority Communities (EPCs) selected for analysis as part of the San Francisco Active Communities Plan (SF ACP). These neighborhoods are part of a longer list of Equity Priority Communities identified by the Metropolitan Transportation Commission. Figure 5 shows all EPCs in San Francisco.

### How does bike parking coverage differ between EPCs and the city at large?

The project team also evaluated the distribution of bike parking across the city. Availability and quality of bike parking can be an indicator of overall network quality – plentiful bike parking may encourage ridership, while lack of bike parking at key destinations may discourage active transportation mode choice. Figure 5 shows the distribution of bike parking locations throughout the city, overlaid on the EPC boundaries.

Bike parking is concentrated in the city's dense, urban northeast: In the Tenderloin, SoMa, and Mission EPCs bike parking is dense and distributed. In other EPCs, bike parking is concentrated along neighborhood commercial corridors, with little available on residential streets. Specifically, in the Outer Mission/Excelsior and Bayview-Hunters Point, bike parking is sparse, and located primarily along major streets and where commercial activity is present. In addition to this physical distribution, results from the Resident Preference Survey indicate that EPC residents report being less aware of safe places to store their active transportation devices (35%) than San Franciscans in general (41%).





### How does bicycle comfort differ between EPCs and the city at large?

One metric of network quality is how comfortable facilities are for users. The project team measured network comfort in two ways:

- 1. The Bicycle Comfort Index (BCI) is a quantitative measure of comfort on every street in San Francisco, based on the January 2023 network<sup>\*</sup>. Comfort is composed of three subscores:
  - a. Context, including land use, pavement quality, reported behavioral violations, and slope
  - b. Traffic, including Level of Traffic Stress (LTS), heavy vehicle traffic, and curbside turnover
  - c. Bike Infrastructure, including the type of facility, intersection, or signalization
- 2. The Resident Preference Survey (RPS) and Phase 2 Public Survey measured qualitative comfort on different facilities by asking residents to rank facilities on a scale from 1 (low comfort) to 5 (high comfort)

### How do Bicycle Comfort Index scores differ between EPCs and the city at large?

Figure 6 depicts the January 2023 BCI scores for all city streets. Medium-to-high-comfort streets tend to be concentrated in flat, low-density, residential neighborhoods. Slow Streets also score very high on the BCI scale. Low-comfort streets are concentrated in dense urban areas, specifically in downtown, along major arterials, and in areas with significant elevation. BCI scores in the EPCs are determined largely by their surrounding contexts: comfort is high on quiet, residential streets, and comfort is low on busy commercial corridors. The following is a summary of the January 2023 BCI scores for the bike network facilities in each EPC (See Figure 7):

- Bayview-Hunters Point: Most network facilities, including those on 3<sup>rd</sup> Street and Oakdale Avenue are rated lowcomfort.
- SoMa: Most network facilities are rated medium-comfort, but Market Street is rated as low-comfort.
- Mission District: Network facilities score relatively high, especially on Shotwell Slow Street which has very high comfort scores.
- Outer Mission/ Excelsior: Most network facilities are rated low-to-medium, with the exception of Cayuga Slow Street which has a "very high" BCI score
- Tenderloin: Most network facilities are rated as low or very low comfort.
- Western Addition/ Fillmore: BCI scores are mixed with moderate-to-high-comfort facilities on Steiner Street, McAlister Street, and Fulton Street, and less-comfortable facilities in the north of the neighborhood on Post Street and Sutter Street.

### Figure 6: Citywide Bicycle Comfort Index (January 2023\*)



**Equity Priority Communities** 

\*The project team calibrated the Bicycle Comfort Index scores based on community input in August 2023. Updated results will be available in the project Storymap and Draft Plan.

Figure 7: Bicycle Comfort Index on Existing Facilities

### How does perceived level of comfort differ between EPCs and the city at large?

As part of the RPS, the project team evaluated how comfortable different groups of people are when using the active transportation network. Figure 8 documents different comfort levels in EPCs and among demographic groups, compared to the city at large. Overall, people living in EPCs feel less comfortable using the active transportation network than the residents citywide. In EPCs, 25% of respondents reported feeling uncomfortable on, or unable to use, the ATN, compared to only 20% citywide (Figure 8). We also found higher rates of discomfort amongst people with disabilities (26% feel uncomfortable), older adults (25% of men over 50, and 30% of women over 50), and people identifying as Asian or Pacific Islander (23%).

#### Figure 8: Overall Level of Comfort on the Active Transportation Network: Citywide vs EPCs and Demographic Groups



Responses show that people living in EPCs have very similar preferences about facility type as those living in non-EPC neighborhoods. San Franciscans--whether living in an EPC or not--seem to agree that the most comfortable facilities are those with physical protection from vehicles, including Class IV Bike Lanes and Car-Free Streets. There is also agreement that the least-comfortable conditions are streets where bikes and cars share the same lane, and busy commercial or transit streets. Despite this consistency, the data also shows that overall, people living in EPCs have slightly lower levels of comfort on all facility types. Figure 10 shows mean level of comfort in each condition, on a scale from 1 (low comfort) to 5 (high comfort) for both EPCs and the city at large.

#### Figure 8: Level of Comfort on Different Facility Types: Citywide vs EPCs



### **Traffic Safety and Enforcement**

## Key Question: How do crashes involving people biking or riding scooters impact EPCs and BIPOC in San Francisco?

To analyze traffic safety conditions in EPCs compared to the city overall, the project team used data from the Collision Analysis, the Resident Preference Survey (RPS), and the Phase 2 Public Survey. Collision data was analyzed for the five-year period from 2017 to 2021, and was also disaggregated into the pre-pandemic period (2017-2019) and the pandemic period (2020-2021). Collision, party, and victim data were pulled from DataSF open data portal, which queries the crash data from TransBASE.sfgov.org.

### Are there any inequities in the distribution of crashes across demographic groups?

Both before and during the pandemic, Black bicyclists and drivers are substantially overrepresented in crashes. Census data show that Black residents make up 5% of San Francisco's population but accounted for 9.6% of all bicycle crash victims and 8.6% of KSI bike victims, pre-pandemic. During the pandemic, these figures rose – Black bicyclists were involved in 11% of all bike crashes and 11.5% of KSI bike crashes. Additional research is needed to better understand travel behaviors and mode preferences or usage for each race.

**Disclaimer:** Party race is based on law enforcement officers' assumptions or visual impressions, which can be problematic and inaccurate. Additionally, there are only five racial categories (excludes "Not Stated") within the crash data, in contrast to the US Census, which has nearly twice as many race and ethnicity categories. The victim representation and comparison made to the San Francisco population should be interpreted with caution given these reporting shortcomings.

### How do crashes differ between EPCs and the city at large?

Both the High Injury Network (HIN) (Figure 9) and collisions (Figure 10) are concentrated in dense urban areas in the northeast of the city, which overlaps with the neighborhood boundaries of Tenderloin, Western Addition, SoMa, and Mission District. This trend is largely due to higher levels of exposure (locations with higher bicycle volumes have higher bicycle crashes). Slightly more than half of the total reported crashes (2,432 or 55.2%) occurred *outside of EPCs* and *tended to be more severe than the crashes within EPCs* (Table 2).

As expected, bicyclist and micromobility crashes throughout San Francisco are concentrated along the HIN: 67% of all crashes and 62.3% of fatal and serious injury (KSI) crashes occur on the HIN. This concentration is more pronounced in EPCs: In EPCs, nearly 81% of all crashes and 80% of KSI crashes occurred along the HIN. There are several potential factors that may influence this concentration of crashes. One factor might be related to bicyclists riding along a smaller number of streets, increasing the volume along those streets, resulting in a higher crash frequency. Another potential factor might be related to systemic safety issues within these communities that increase bicyclist risk along the HIN or expose bicyclists to greater risk due to a higher ratio of HIN streets to non-HIN streets. Acquiring comprehensive bike counts within EPCs can help better understand bicyclist exposure and estimate crash risk within these communities.

| EPC            | # Crashes | % Crashes | # KSI | % KSI  | % Crashes resulting in KSI      | Avg. EPDO* |
|----------------|-----------|-----------|-------|--------|---------------------------------|------------|
| Not within EPC | 1,342     | 55.2%     | 138   | 58.5%  | 10.3% (of crashes outside EPCs) | 23.2       |
| Within EPC     | 1,090     | 44.8%     | 98    | 41.5%  | 9.0% (of crashes within EPCs)   | 19.8       |
| Total          | 2,432     | 100.0%    | 236   | 100.0% | 9.7% (of all crashes)           | 21.7       |

Table 2: Bicyclist crashes by Equity Priority Community, 2017-2021

\*Severity is measured by an Equivalent Property Damage Only (EPDO) score that indicates the estimate cost of the crash. For details on how EPDO is calculated, see the Collision Analysis Memorandum or <u>USDOT Federal Highway Administration Safety Toolkit</u>

### Figure 9: 2022 High Injury Network



2022 High Injury Network Equity Priority Communities

### Figure 10: 2017-2021 Crashes by Mode



2017 - 2021 Crashes

Equity Priority Communities

- Bike-Car
- Bike-Pedestrian
- Solo-Bike



### Figure 11: Fatal and Serious Injury (KSI) Crashes (2017-2021) and Equity Priority Community Boundaries\*

\*This map shows all of the MTC-defined Equity Priority Communities (yellow fill), as well as the six Active Community Plan focus EPCs (yellow outline).

### Do reported traffic violations differ between EPCs and the city at large?

The project team found that reported traffic violations are similar between EPCs and the city at large. The top three reported violations for KSI crashes within EPCs include unsafe speed for conditions (26.5%), disregard red signal (11.2%), and unsafe turn or lane change (10.2%). Excluding "unknown" violation types, these are also the top three reported violations for crashes that occurred outside of EPCs.

#### How do citations differ between EPCs and the city at large?

The project team looked at citywide citation data from 2017 to present. Citations for both bike and scooter-related incidents are concentrated in high-density, high-volume neighborhoods, which overlap with the Tenderloin, SoMa, and Mission District EPCs. Although adjacent to high-density and high-volume neighborhoods, bike and scooter-related citations in the Western Addition are relatively low compared to neighboring EPCs. Citations are also relatively low in Bayview Hunters-Point, and the Outer Mission/ Excelsior, where overall density and volumes are lower. Parking citations far outweighed riding and permit citations, which could indicate that the city lacks adequate parking facilities for bikes and scooters, especially for shared devices.

Additionally, the RPS asked respondents about their perceptions of traffic law adherence amongst bike and scooter users. Citywide, 41% of respondents feel that people using bikes and scooters do not follow traffic laws. This perception is lower in EPCs – a third of EPC respondents (31%) said that they feel that people using bikes and scooters do not follow traffic laws. During Phase 3 engagement, the project team asked community members what they need to bike, scoot, or roll more in San Francisco. Almost 1,000 people said they would like to see better behavior and safety habits by road users. As part of this response, roughly 80% of all participants said that traffic enforcement is a high priority, while only 74% of BIPOC respondents indicate this as a high priority. **Disclaimer:** Because of the deep, complex history of policing and enforcement in BIPOC communities, it is important to consider this input with a critical lens. As part of the next round of community workshops, the project team will work with CBO partners to ensure residents have the space to express their needs, concerns, or priorities related to enforcement and policing in their neighborhoods.

### **Disability and Access**

## Key Question: How do people with disabilities use and experience the active transportation network, and how does their experience differ from people without disabilities?

The project team explored the relationship between the Active Transportation Network and disability access via the Resident Preference Survey (RPS) and Phase 2 public survey. Twenty percent of RSP respondents identified as having one or more disability (n=80). Fifteen percent of all public survey respondents (n=252) are people with disabilities (15%).

### What types of active transportation activity is most common among people with disabilities?

Of the people that completed the RPS, 18% of respondents reported using an assisted mobility device, including a manual wheelchair, powerchair or electric wheelchair, or mobility scooter. People with disabilities report using their devices on a daily basis at higher rates than those without disabilities (20% compared to 7% - See Table 3). Compared to people <u>without</u> disabilities, people <u>with</u> disabilities report:

- Slightly lower rates of driving (82% of people with disabilities drive at least once a month compared to 86% of people without disabilities);
- Similar rates of using transit, walking, and biking;
- Slightly higher rates of using e-bikes and scooters; and
- Substantially higher rates of using other devices (25% compared to 15%)

The reasons that people with disabilities use the active transportation network mirror citywide results – much like the city at large, San Franciscans with disabilities use the network to travel to school, to run errands, and to go to social activities. There are some differences in how the network is used including:

- People with disabilities report lower rates of commuting to work via the ATN (35% compared to 43% of people without disabilities)
- People with disabilities report lower rates of using the ATN for exercise or to enjoy the outdoors (30% compared to 38%)
- People with disabilities report slightly higher levels of participation in encouragement events such as Bike to Work Day and Sunday Streets

### Table 3: Resident Preference Survey Responses - People with Disabilities vs People without Disabilities

| Resident Preference Survey Outputs/ Key Metrics      | People with<br>Disabilities | People<br>without |
|------------------------------------------------------|-----------------------------|-------------------|
| Active Transportation Device Usage (Frequency)       |                             |                   |
| Daily                                                | 20%                         | 7%                |
| Weekly                                               | 16%                         | 20%               |
| Monthly                                              | 11%                         | 20%               |
| Never/Not Sure/No Response                           | 53%                         | 53%               |
| Overall Comfort on the Active Transportation Network |                             |                   |
| Comfortable Anywhere                                 | 4%                          | 4%                |
| Comfortable in Lanes                                 | 15%                         | 21%               |
| Comfortable Behind Barriers                          | 55%                         | 57%               |
| Uncomfortable/Unable to Use                          | 26%                         | 18%               |

| Resident Preference Survey Outputs/ Key Metrics                                                                       | People with<br>Disabilities | People<br>without |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|
| Participation in Encouragement Events: Percent of people that                                                         |                             |                   |
| Have participated in Bike to Work Day                                                                                 | 18%                         | 14%               |
| Have attended a Sunday Streets event in San Francisco                                                                 | 39%                         | 36%               |
| Have walked, biked, or rolled on one of San Francisco's designated Slow Streets                                       | 49%                         | 52%               |
| Safety and Affordability: Percent of people that                                                                      |                             |                   |
| Have had a bike or scooter (or part thereof) stolen in San Francisco                                                  | 43%                         | 25%               |
| Are aware of safe places in San Francisco where they can park a bike, scooter, or other active transportation device. | 33%                         | 43%               |
| Believe that owning or renting a bike, scooter, or other active transportation device in San Francisco is affordable  | 44%                         | 48%               |
| Believe that people using active mobility devices such as bikes and scooters usually follow traffic laws              | 28%                         | 32%               |

### How do people with disabilities experience the active transportation network?

According to resident preference survey results, people with disabilities report higher rates of theft of their active transportation devices than people without disabilities (43% compared to just 25%). Moreover, people with disabilities are less likely to be aware of safe places in San Francisco to park a bike, scooter, or other mobility device (just 33% report knowing of safe parking spaces, compared to 43% of people without disabilities). People with disabilities are also less likely to agree that owning or renting a bike, scooter, or other active transportation device is affordable in San Francisco (44% agree, compared to 48%). Note that these statistics may have a high margin of error, given the small sample size.

Overall, people with disabilities are less comfortable on the active transportation network than San Franciscans without disabilities. Twenty-six percent of people with disabilities report being uncomfortable on or unable to use the network, compared to just 18% of people without a disability (see Figure 8). In general, people with disabilities prefer to use facilities that provide some protection from cars – this is consistent with citywide preferences.

Figure 12 shows that, compared to citywide results, people with disabilities report lower levels of comfort on streets with sharrows or painted bike lanes, as well as on busy commercial streets, steep slopes, and on bike paths or car-free streets. People with disabilities report higher levels of comfort on bike lanes with some kind of barrier, and on Slow Streets.





### What interventions do people with disabilities want to see?

Questions in the Phase 2 Public Survey asked San Franciscans what they need in order to bike, scoot, or roll more. People with disabilities indicated that the most important intervention is "more comfortable and welcoming lanes and facilities" (38% of respondents), followed by "better behavior and safety habits" (35%).

| Table 4: Public Survey | Results - Policy a | nd Program Preferences | of People with Disabilities |
|------------------------|--------------------|------------------------|-----------------------------|
|                        |                    |                        |                             |

| What's most important to get you to bike, scoot, and roll more in San Francisco? | Percent of Respondents |
|----------------------------------------------------------------------------------|------------------------|
| More comfortable and welcoming lanes and facilities                              | 38%                    |
| Better behavior and safety habits by road users                                  | 35%                    |
| More options for owning and renting bikes or scooters                            | 17%                    |
| Information on how to bike, scoot, and roll                                      | 10%                    |
| Supporting facilities like device parking or charging for e-devices              | 0%                     |
| Events that get people together to ride safely                                   | 0%                     |

Within each category, the project team asked respondents to indicate "low", "medium", and "high" priority for specific interventions. The interventions that were most often ranked as "high" priority by people with disabilities were:

• Traffic Enforcement\* (80% of respondents who selected "better behavior and safety habits by road users" indicated that this is a "high" priority)

- More pavement maintenance, replacement of broken flex posts, and street sweeping to clear debris or broken glass (77%)
- More signage and wayfinding to navigate the city and find destinations (73%)
- Better connections between bike facilities (71%)
- Driver education on safe behaviors and how to share the road (70%)

\***Disclaimer:** Because of the deep, complex history of policing and enforcement in BIPOC communities, it is important to consider this input with a critical lens. As part of the next round of community workshops, the project team will work with CBO partners to ensure residents have the space to express their needs, concerns, or priorities related to enforcement and policing in their neighborhoods. Note that RPS data shows lower levels of priority for enforcement among respondents of color.

### **Equity Priority Community Neighborhood Profiles**

The following section provides an overview of each EPC neighborhood and highlights key findings from the Resident Preference Survey, Network and County Analysis, and Collision Analyses. EPC findings are compared to citywide findings to understand differences between each EPC and the city at large.

### SoMa

SoMa is located in the northeastern quadrant of the city, in the dense urban center, and is bordered by the Tenderloin EPC in the north and the Mission District EPC in the south. SoMa residents are more likely to be rent burdened, have limited English proficiency, be people of color, low income, disabled, and are older than 75 years old. The share of residents that are in single-parent family households and that are younger than 18 years old is greater than citywide.

Likely as a result of being located in the city's dense urban center, SoMa has some of the best network coverage in the city; 36% of lane miles have bike facilities and 22% of lane miles with bike facilities are high-quality. Class IV bike facilities in SoMa also have some of the highest volumes in the city, likely due to the density of land uses, people, housing, jobs, and destinations. The project team also found that when using the Active Transportation Network, SoMa residents tend to use the network in a more utilitarian manner (commuting to work, school, or running errands),





than citywide residents (who use the network more for social events and exercise). This may be related to the fact that SoMa residents are much less likely to own cars (34% compared to 79%), and therefore use the network in place of car trips. Additionally, SoMa bikeshare and scootershare trips are more than double the average daily rate citywide.

In terms of safety, more than 10% of bike and scooter crashes citywide occurred in SoMa. Of these, 89% of the all crashes, and 100% of KSI crashes occurred along the HIN. KSI crashes occurred in SoMa at a slightly lower rate than citywide KSI crashes, at 8.2% and 9.7%, respectively. While almost half of all crashes (and over half of all KSI crashes) occurred on, or along, streets with four vehicle lanes, and 89% of all crashes occurred along streets with 25 mph speed limits, the most common crash type in SoMa involved both the driver and bicyclist proceeding straight.

### SoMa Active Transportation Key Characteristics



### **The Mission District**

he Mission is located in the north-central area of the city, just south of the city's dense urban center, and is bordered by the SoMa and Tenderloin EPCs to the north and the Bernal Heights neighborhood to the south. Mission District residents are more likely to have limited English proficiency, be people of color, be low income, and have disabilities than all San Francisco residents.

Although the Mission has some of the highest network coverage in the city (30% of lane miles have bike facilities compared to 24% citywide), only 8% of lane miles with bike facilities are high-quality. In terms of network coverage and volumes, the Mission seems to be over-performing, indicating highvolumes relative to network coverage. The project team also found that when using the Active Transportation Network, Mission residents tend to use the network in a more utilitarian manner (commuting to work, school, or running errands), than citywide residents (who use the network more for exercise). This may be related to the fact that in the Mission, the project team found that there is some association between households that do not own cars and those who commute to work by bike.





likely due to the proximity between housing and jobs. Both the bike commute mode share and the percent of households that do not own cars in the Mission are more than double that of citywide residents (7.9% of Mission residents commute by bike compared to only 3.1% of citywide residents, and 48% of Mission residents do not own cars compared to only 21% of citywide residents). Additionally, results from the Resident Preference Survey indicate that a larger share of Mission residents, compared to citywide residents, use the Active Transportation Network, and that estimated bike and micromobility volumes in the Mission are about twice as high as the citywide average.

Of the 232 crashes that occurred in the Mission District, 86% of the total crashes, and 83% of KSI crashes occurred along the HIN. KSI crashes in the Mission District occurred at a lower rate than citywide KSI crashes, at 5.2% and 9.7% respectively. While almost half of all crashes (and over half of all KSI crashes) occurred on, or along, streets with four vehicle lanes, and 100% of all crashes occurred along streets with 25 mph speed limits, the most common crash type in the Mission involved perpendicular crashes with both the bicyclist and driver proceeding straight.

### **Mission Active Transportation Key Characteristics**



### **Bayview-Hunters Point**

Bayview-Hunters Point is located in the southeast corner of the city and is bordered by the Potrero Hill neighborhood to the north, and Portola and Visitacion Valley neighborhoods to the west. Bayview-Hunters Point demographic characteristics show that residents are more likely than residents citywide to be single-parent households, have limited English proficiency, be people of color, be low income, have disabilities, and be younger than 18 years old. There is lower share of residents that are rent-burdened and that are seniors (older than 75 years old).

The project team found that while although Bayview-Hunters Point has a similar percentage of lane miles that have bike facilities compared to the city as a whole, only 5% of those lane miles are high-quality (lower than the citywide average of 8%). Compared to citywide rates,

bikeshare, micromobility, and bike commuting in rates Bayview-

Hunters Point are all lower than citywide rates, and while although Class IV separated bikeways in Bayview-Hunters Point have concrete barriers separating riders from vehicular traffic, the project team found low network volume here (volumes on Class II and III facilities were also found to be relatively low). These findings are likely due to the surrounding land use (low density), long distances from destinations, and below average network quality. This may also be why the percentage of households who

Bayview Hunters Point



own cars is similar to the citywide rate (77% in Bayview-Hunters Point and 79% citywide) and may be linked to the relatively low Active Transportation Network usage of this EPC).

In terms of safety, the project team found that crashes are more severe in Bayview-Hunters Point than citywide. While the total number of crashes is relatively low compared to other EPCs, with only 46 total crashes, 24% were KSI crashes compared to only 9.7% citywide. While almost half of all crashes and KSI crashes occurred on, or along, streets with four vehicle lanes, and 72% of KSI crashes occurred along streets with 30 mph speed limits, the most common crash type in the Bayview-Hunters Point involved crashes with both the bicyclist and driver proceeding straight.

### **Bayview-Hunters Point Active Transportation Key Characteristics**



### **Outer Mission/ Excelsior**

The Outer Mission/Excelsior is located in the southcentral area of the city, west of Bayview-Hunters Point and east of Lake Merced. Residents of the Outer Mission/Excelsior are more likely than San Franciscans overall to have limited English proficiency, be people of color, be low income, and be younger than 18 years old.

The Outer Mission/Excelsior has both low network coverage, and less highquality network coverage compared to the citywide network. Relatedly, bike commuting is also low in the EPC, and can likely be attributed to lower density land use patterns and people living too far from their jobs to make bike commuting an attractive option. In terms of network performance, the Outer Mission/Excelsior is underperforming, meaning that volumes are low relative to network coverage, which may be due to factors like land use (long distances between key destinations), connectivity (poor connections to destinations outside of the neighborhood), and network quality (such as lack of protection from cars). Low volumes may also simply be the result of low population density, and the fact that only 11% of Outer Mission/Excelsior residents do not own cars (compared to 21% citywide).



- Slow Street

In terms of safety, the Outer Mission/Excelsior had the fewest number of crashes than any other EPC, with 28 total crashes resulting in only one KSI crash. The low number of crashes could be a result of the relatively low Active Transportation Network use in this EPC. While almost half of all crashes and KSI crashes occurred on, or along, streets with four vehicle lanes, the most common crash type in the Outer Mission/Excelsior involved crashes with both the bicyclist and driver proceeding straight.





### Western Addition/ Fillmore

The Western Addition/Fillmore EPC is located in the northeastern quadrant of the city, directly west of the Tenderloin EPC. The Western Addition/Fillmore's residents are more likely than San Franciscans overall to have limited English proficiency, be people of color, be low income, be disabled, and be younger than 18 years or older than 75 years old.

Despite being adjacent to the city's dense urban center, and to EPCs with higher than-average network coverage, the Western Addition/Fillmore EPC has lower-than-average network coverage (19% compared to 24% citywide), and has no high-quality facilities (indicating an absence of protected bike lanes, off-street paths, Slow Streets, and car-free streets within EPC boundaries). Although the EPC has low network coverage, the project team found that certain streets in the EPC see a high volume of off-network use, which may indicate that current infrastructure is working in the area. Additionally, Western Addition/Fillmore residents commute to work by bike at a higher rate than citywide residents and may be using off-network routes to get to their destinations. Bikeshare and scootershare trips in this EPC are also higher than the average daily citywide rate. When using the Active Transportation Network, Western





Addition/Fillmore residents use the network in a more utilitarian manner (commuting to work, school, or running errands), than citywide residents (who use the network more for exercise). This may be related to the fact that Western Addition/Fillmore residents are twice as likely to no own cars as citywide residents (47% compared to 21%), and therefore use the network in place of car trips.

In terms of safety, 117 crashes occurred in the Western Addition/Fillmore, with 6.8% of total crashes resulting in KSI crashes (less than the citywide rate of 9.7% KSI crashes). While almost half of all crashes occurred at, or along, streets with two or more vehicle lanes, half of all KSI crashes occurred at, or along, streets with five or more vehicle lanes. and KSI crashes occurred on, or along, streets with four vehicle lanes, the most common crash type in the Western Addition/Fillmore involved crashes with both the bicyclist and driver traveling in the same direction. Posted speed limits also impact crashes, with 73% of all crashes occurring along streets with a posted speed limit of 25 mph, and half of all KSI crashes occurring along streets with a posted speed limit of 35 mph.

### Western Addition/Fillmore Active Transportation Key Characteristics



### Tenderloin

The Tenderloin is located in the northeastern quadrant of the city, in the dense urban center, and is bordered by the Western Addition/Fillmore EPC in the west, and the Mission and SoMa EPCs in the south. The Tenderloin's residents are more likely to be rent burdened, have limited English proficiency, be people of color, ve low income, and have disabilities). The Tenderloin EPC has higher-than-citywide percent of residents that are single family households, are youth (younger than 18 years old), and that are seniors (older than 75 years old).

The Tenderloin has some of the highest network coverage in the city, with 28% of lane miles having bike facilities, compared to only 24% citywide . The Tenderloin also has a higher percentage of high-quality facilities, with 10% of lane miles being high-quality. High network coverage in the Tenderloin can be explained by its dense, urban, and central location. While network coverage in the EPC is high, there are some streets that are under-performing in terms of volume, and may be linked to barrier types not being appropriate for surrounding activity, frequency of vehicles parked in bicycle facilities, high curbside turnover, and reports of frequent debris in bicycle facilities. The project team also found that despite low



Slow Street

car ownership in the Tenderloin (81% of households do not own cars compared to only 21% citywide), of those surveyed, less than half of respondents use the Active Transportation Network at all, and less than 20% use it daily. The project team also found that when using the Active Transportation Network, Tenderloin residents use the network in a more utilitarian manner (commuting to work, school, running errands, or going to social activities), than residents citywide (who use the network more for exercise).

Every street in the Tenderloin is on the HIN (meaning that all crashes occurred on the HIN), and that most streets in the Tenderloin have Muni bus routes, which can compromise bicycle facility safety. Crashes in the Tenderloin account for more than 10% of bike or scooter crashes citywide. Of the 243 total crashes that occurred in the EPC, 10.7% resulted in KSI crashes (higher than the citywide average of 9.7%).. While almost half of all crashes and KSI crashes occurred on, or along, streets with three vehicle lanes, and over 90% of both total and KSI crashes occurred along streets with 25 mph speed limits, the most common crash type in the Tenderloin involved perpendicular crashes with both the bicyclist and driver proceeding straight.

### **Tenderloin Active Transportation Key Characteristics**



### **Next Steps**

This memorandum focuses on quantitative data, and next steps include integrating qualitative findings from public outreach, community workshops, and coordination with disability advocates. This next phase of work will provide a deeper understanding and analysis of Active Transportation Network issues and concerns amongst people with disability. The next phase will also include a connectivity/access analysis that will include findings from EPCs, specifically looking at which neighborhoods have access to key destinations (e.g., transit, parks, schools, jobs, hospitals) via comfortable and high-quality routes. The project team will also look to understand what barriers currently exist for people accessing the Active Transportation Network, and what may alleviate those barriers.