

Train Control Upgrade Project

SFMTA Board of Directors January 17, 2023

Current conditions

ATCS approaching 30 years old, designed in the 1980s

Initial procurement treated as one-time investment, something not to be touched for 30 years

Parts and software are becoming increasingly obsolete and difficult to source

Due to age, components fail regularly and institutional memory eroding on both the supplier side and at agency

Train Control Upgrade Project: New communications-based train control (CBTC) system upgrade to improve Muni light rail service

۲۲ ۲

Scope | Rider Benefits

Reduced delays: Customers no longer "stuck" on trains between stations due to subway congestion or slow-moving trains with a communication failure

Reduced travel times: Trips on Muni will be faster as trains will not have to wait for traffic lights on the surface – the train control system will talk to the signals and let them know a train is coming

Improved reliability: More consistent arrival times that match the advertised frequency of trains, which makes tripplanning more reliable

Better service: the new system will give train controllers more flexibility to manage bunching and gaps

Project strategy centered on culture of risk mitigation

Focused on proactive management and risk mitigation from onset

- Decision to embark on competitive upgrade based on risk analysis of doing nothing and limitations of sole source upgrade
- Project phasing developed to minimize risk
- Contracting strategy offers best chance of beneficial partnership with supplier
- Risks considered early and incorporated into RFP and project team will continue to update risk assessment at key project milestones

Supplier

System Design, Procurement and Support

Technology system procurement best fit for selection criteria and enables longterm performancebased support

SBE/DBE goal: 5%

Initial **RFP**

Installer(s)

System Installation

Contracts

Separating the installation contracts enables a more refined construction scope and allows us to maximize SBE/DBE

SBE/DBE goal: 100% (preliminary)

Multiple future RFPs

Consultant

Delivery Support

Technical consulting contract to support project management and leverage outside train control expertise to ensure we deliver the best system possible

SBE/DBE goal: 15% (preliminary)

Single future RFP

Ordinance allowing multi-year contract and negotiated procurement

Improves price and terms because firms are in competition with peers

Key elements linked to strategic goals:

ſ	-1	3-	
	~	— I	
	\checkmark		
	×.		
	\checkmark		

Performance-based support fee creates contractual elements for supplier to build reliability into initial design

Vendor-Managed Spares Inventory designed to incentivize reduced parts replacement

_	

Regular software updates keeps hardware and software up to date

We have consulted with several American, Canadian and international agencies and our project approach is informed by our shared experiences

American peers

MBTA Green Line BART New York City Subway

Canadian peers

Vancouver SkyTrain Edmonton Toronto (Eglinton LRT)

International peers

London (LU and DLR) Amsterdam Frankfurt VGM

Special SFMTA Board Subcommittee

Ad hoc committee to review and inform project purpose and objectives

Meetings have reviewed contracting approach, schedule, funding, risk assessments, and project delivery lessons learned

Allows for deeper dive on specific project topics such as the risk assessment and provides a platform for board feedback

Committee will continue through procurement and help inform key project milestones

Funding | Funding Plan

Section 1

Funding Source	FY23-27 CIP	Project Total	
Operating (prior)	N/A	\$2,095,000	
Revenue Bond (prior)	N/A	\$5,405,000	
General Funds (prior)	N/A	\$340,000	
Transp. Sustainability Fee (prior)	N/A	\$10,000	
Revenue Bond	\$35,595,000	\$35,595,000	
Prop K	\$41,077,378	\$41,077,378	
General Funds	N/A	\$25,830,132	
Transportation Sustainability Fee	N/A	\$8,785,609	
Operating Fund	N/A	\$8,000,000	
AB 664	N/A	\$7,490,752	
Caltrans (STIP)	\$15,793,794	\$24,394,000	
Caltrans (TIRCP)	\$28,364,282	\$100,576,000	
SB1 – State of Good Repair	N/A	\$30,000,000	
FTA (Transit Capital Priorities)	\$165,001,159	\$317,054,941	
Grand Total	\$285,831,613	\$606,653,812	

Schedule | Full Timeline

Proposed Project Schedule

PHASE	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
System Design	Award E	9									
Pilot		any 2024									
Subway Replacement											
Surface											
Support/Lifecycle Investment											→

Questions?

Muni's train control today

Subway Automatic Train Control System (ATCS)

- Went into service in 1998
- System keeps vehicles safely spaced
- Operators open/close doors, but all other movements are automated
- ATO (automatic train operation) significantly improved Muni Metro performance
- Increased throughput and reliability in the tunnel over previous manual operations

Surface Independent Operation

- Vehicles on the surface are fully controlled by operator
- Signals and switches are activated by operators and controlled by independent wayside computers
- Routes are requested as trains are detected by the "VETAG" signal priority system, and assigned first come, first serve
- Limited tools for spacing management

Current conditions

Before the pandemic, Muni Metro service regularly experienced delays and crowding, in large part due to the design and the age/condition of the train control system

Lessons Learned

SFMTA draws from multiple sources of "lessons learned" to set up Train Control for success including:

Major SFMTA capital projects like Central Subway and Van Ness BRT

Peer agencies – North America and Europe

Past SFMTA technology projects

Current ATCS system

