

Train Control Upgrade Project

SFMTA Citizen's Advisory Committee October 3, 2024

Learning from past projects and improving contracting approach

Separate contracts			
CONSULTANT	SUPPLIER	INSTALLERS	
 Support staff with project delivery 	 Provides technology Helps design system Must ensure technology meets performance 	 Multiple installers shorten construction timeline 	
SBE/DBE goal: 15% Contract approved August 2024	 requirements Provides long-term maintenance support and knowledge transfer to SFMTA staff 	SBE/DBE goal: 100% (preliminary) Future RFQ followed by individual bids	
	SBE/DBE goal: 5%		

Ē

M

TCUP is the first project to plan for future needs now

Supplier: Hitachi Rail GTS USA

Benefits:

- Most advanced technology in the industry
- In 16 countries and major systems like
 London, Paris, Singapore, Hong Kong,
 New York, Vancouver, Toronto, BART
- Only Hitachi offers transponder-based train control communication technology
- Can update existing onboard computers for less vehicle integration cost and risk
- Smaller, centrally located wayside equipment for **easier maintenance**, less street clutter
- SFMTA has experience with this supplier, structured contract to apply lessons learned

HITACHI Inspire the Next

What we will ask the SFMTA Board of Directors to approve on October 15:

CBTC Supplier contract:

Contract No. SFMTA-2022-40 FTA with **Hitachi Rail GTS USA** for design, furnishment, system implementation, support and related services for a Communications-Based Train Control System (CBTC):

- Nine years of design and procurement (the span of the project) not to exceed \$212,093,633
- Ten years of required support services after the project ends, not to exceed \$113,922,811
- Two five-year additional support service options, not to exceed \$237,681,185

Better outcomes from competitive, negotiated procurement

Contract wins for the project

Negotiated procurement process allowed for discussion with industry. Vendors understood project needs better. Lead to better proposals.

Annual software updates

• Keeps the new train control system up to date.

Long-term support included in contract

• Recognizes that a new train control system is a 30-year investment. Includes all spare parts.

Performance goals based on outcomes

• Builds performance into contract. Incentivizes supplier to build quality into the design up front and encourages supplier to make sure the new train control system works properly.

Knowledge transfer

• Creates a pathway to build in-house expertise for greater self-sufficiency.

Supplier Deliverables

Design: Hitachi will customize their baseline latest-generation train control technology to SFMTA's specifications

Construction: Hitachi delivers new train control components and monitors installation

Testing: Hitachi performs testing to ensure the system meets performance requirements

Long-term support: Hitachi provides maintenance support, training to SFMTA staff, and continues to monitor performance

Supplier Contract

Jumping five generations forward

Our History

(

HITACHI Inspire the Next

Modern Train Control Components

Train Control System - SelTrac[™]

HITACHI Inspire the Next

Page 12

M

(

C Hitachi Rail Limited 2024. All rights reserved.

CBTC Automatic Train Supervision Interface

Automatic Train Supervision: Schedules Management

- CBTC will be able to receive, accept, and process timetable databases produced by CAD/AVL system
- CBTC can store at least a year's worth of schedules data
- CBTC can modify timetable databases before and during run time to account for changes during operations

Automatic Train Supervision: Headway Management

- CBTC can optimize based on schedules or headway
- CBTC will calculate optimal pacing speed and dwell time to stay on schedule or headway
- CBTC can automatically take action to maintain schedules or headways, or suggest action to the operator on their display

Automatic Train Supervision: Route Setting

- CBTC offers automatic reroute functions to use in contingency situations
- CBTC automatically assigns vehicle routing based on preloaded schedules
- CBTC prioritizes trains at junctions based on different logic, below:

. .

Enhanced automatic features in subway

CBTC will control train acceleration, deceleration, speed, station stops, and door opening in Automatic Train Operation (ATO) mode.

Operator will continue to provide oversight.

(

New street mode features

- Include Automatic Train Supervision and safety functions
- System recommends actions to operator for safe, efficient operation
- "Driver assist" can be enabled to enhance safety

CBTC Safety functions will work citywide

•	Train Location Determination		Safe Braking
(7)	Train Speed Determination		Train Door Interlock / Step Control
Lilili	Train Length Determination		Rollback Protection
	Safe Train Separation	Ø	End of Track Protection
A 171	Speed Enforcement	*	Parted Train Protection
	Overspeed Warning	5.	Intrusion Detection Interface
3	Interlocking Function	<u>ی</u> ال	Tunnel Ventilation Interface

Long-term Support

Design-Furnish-Support contract with up to 20 years of on-site technical support and performance-based requirements.

Central Maintenance System Benefits

- Can monitor all CBTC subsystems in real time
- Integrates with EAMS to create database of LRU, software revision, and parts
- Customizable alarms quickly alert relevant personnel to different issues
- Detects potential fault conditions before the failure occurs
- Provides preventative maintenance reminders

Roadmap to Notice to Proceed

Mariposa 20th St. 23rd St. Marin St.

Begin initial installation: 2027

Testing: 2028

Complete initial installation: Late 2028

Train Control Upgrade Project Timeline

PHASE	2024	2025	2026	2027	2028
CBTC Complete System Design		•			
Initial Technology Demonstration	NTP Early	/ 2025			
Subway Technology Upgrade					
On-Street Installation					
Support/Lifecycle Investment					

Project Phasing

Transparent, Full Scope Investment

TCUP is the first project to plan for and build in support costs up front using maximum possible cost to invest in reliability.

Train Control Supplier Contract – Not-to-Exceed Amounts

Total Procurement including Options (TCUP Capital Budget)

*This project cost is already funded in the TCUP \$700M funding plan, through capital funds than cannot be used to fund Muni service.

Total Initial Support (FY32-44 Operating Budget)

*We know we will need continual support and some of this cost absorbs what we already pay in support for the current system.

Total Support Options (FY45-54 Operating Budget)

*Structuring as options give SFMTA flexibility to revisit support based on needs in ten years.

TOTAL Not-To-Exceed Amount

IM

\$237,681,185

\$563,697,629

\$212,093,633

\$113,922,811

Allocation of Contract Costs

TCUP Capital Budget

Item	Budget
Train Control Supplier Contract (This Contract)	\$212M
Consultant Contract (Approved Aug 2024)	\$30M
Installation Contracts	\$99M
Project Management and Engineering	\$102M
Network Infrastructure and Systems Integration	\$64M
Testing, Training and Operational Support	\$53M
Contingency	\$140M
Total Train Control Capital Budget	\$700M

Project Funding Plan

Total Project Budget	\$700,000,000	
2021 Revenue Bond	\$24,500,000	
Prop B (General Fund)	\$30,000,000	
TSF Developer Fee	\$12,000,000	
Prop L	\$16,000,000	Local
GO Bond	\$30,000,000	Regiona
AB 664	\$1,500,000	State
TIRCP Grant	\$130,000,000	Federal
SB 1 (State of Good Repair)	\$25,000,000	
FTA (Transit Capital Priorities)	\$375,000,000	
Funding Need	\$56,000,000	

Questions?

Contract Price Breakdown

Procurement	Price
Base Procurement	\$151,514,437
Procurement Options	\$44,761,719
Escalation (Procurement)	\$15,817,476
Total Procurement (TCUP Capital Budget)	\$212,093,633

Initial Support	Price
Support (First 10 years + Phase In)	\$56,676,617
Escalation (Initial Support)	\$57,246,194
Total Initial Support (FY32-44 Operating Budget)	\$113,922,811

Optional Support	Price
Support Options (10 additional years)	\$62,498,541
Escalation (Optional Support)	\$175,182,644
Total Optional Support (FY45-54 Operating Budget)	\$237,681,185