

Hybrid Technology Parallel vs. Series

SFMTA Fleet Engineering EMSC April 28, 2021 Meeting

What is a Hybrid vehicle?

- A hybrid vehicle is one that uses **two or more distinct** types of power.
- **Hybrid electric vehicles** are powered by an internal combustion engine and an electric motor, which uses energy stored in batteries.

Common Propulsion Components

- Combustion Engine
- Fuel Tank
- AC Traction Motor
- ESS (Battery Packs)
- Power Inverter (DC \rightarrow AC)
- Propulsion Power Control HYBRID DRIVE SYSTEM (BAE ENERGY STORME SYSTEM (BAE ENERGY STORME SYSTEM ESS)
- Auxiliary Power Distribution
- **Axles**

SECTION 18 DESTINATION SIGNS TWIN VISION SMART SERIES III)

SFMTA

Hybrid Architectures

Parallel v. Series Hybrid System

Allison Transmissions

Compound Split Parallel Hybrid System: H 40/50

- Integral motor & generator & gearing
- Common e-machines
- Engine capable of operating independent of output speed
- Higher system efficiency when operating as a Hybrid due to the engine mechanical path to the output
- Full regenerative braking recovery from 50mph

H40/50 EP: Compound Split Parallel Hybrid

Series Hybrid with Gear Module

Series Hybrid System

- Generator & traction e-motor w/potential gearing
- Electrical path from engine to output
- Engine operates independent of output speed
- Efficiency goes down as speed increases

Advantages and Disadvantages

Series

Advantages:

- No complicated multi-speed transmission and clutch design
- Small Engine required
- Anti-idling feature
- Operate without Engine running
- Lower cost

Disadvantages:

- Require larger battery pack
- More complicated motor to meet power requirement
- Max speed limitation

Parallel

Advantages:

 More powerful on high-speed condition

Disadvantages:

- Complicated multi-speed transmission and clutch design
- More expansive

М SFMTA

Evolution of SFMTA Motor Buses

1999 - Neoplan (Diesel)

2013 – New Flyer (Parallel & Series Hybrid) 2016 – Engine Start/Stop feature (Series Hybrid)

2007 – Orion (Parallel Hybrid)

2018 – Part-time EV(Series Hybrid)

Series Hybrid System

68 Series Hybrid on Part-time EV

Route	Route Total Distance (miles)	Green Zone Distance (miles)	Percentage of Total Distance
2	5.43	0.81	15%
12	6.72	1.20	18%
2 12 19	8.4	1.36	16%
28	12	1.58	13%
28R	8.45	0.93	11%
43 47	12.4	2.78	22%
47	5.35	1	19%

Part-Time EV for Parallel Hybrid

- Allison Propulsion offer eGen Flex.
- Similar operation s the Series Hybrid Part-Time EV
- Same Power output
- Not retrofittable for existing bus

Thank You! & Questions?

