

Train Control Program Update

SFMTA CAC EMSC: October 27, 2021

Overview

These are astonishing numbers. No agency in the US is getting these efficiency improvements. - Jeffrey Tumlin

We have never seen the Market Street subway perform more reliably than today.

M

Service Plan

Subway End to End Travel Times

Trip times, including those "worst trips" have been reduced

Subway End to End Travel Times

Trip times were also reduced in the westbound direction

Subway: Total Minutes of Delay

Eastbound

Westbound

Monthly ATCS Time Stopped Box & Whisker Plot

Time Period

M

Pre-Pandemic

Service Restoration (K/T & N)

Data Analysis

N-Judah End-to-End Travel Times

Ocean Beach → 4th & King, morning peak

Measured at Church Station, eastbound

Subway Headways

Moving from "too close together" to "optimal" (shown in blue)

2019 Headway Distribution

M

Data Analysis

April 16, 2019, eastbound

Service Snapshot: 2019

Ā

M

October 12, 2021, eastbound

Service Snapshot: 2021

Less closely spaced trains means system can recover from delays without cascading

Eastbound Pre-Pandemic Stop Time Distribution

Pre-Pandemic Stop Time Distribution

SFMTA Train Control Upgrade Project (TCUP)

Westbound

Subway Station Dwells

Reduced ridership in 2021 resulted in slight reduction to station dwell times However, this reduction was not large enough to influence delays

Simulation

- We know empirically that when we start to run more than about 30 trains an hour, performance suffers.
- We wanted to learn more about what causes subway congestion and delays. There are many factors including turnback times, trains arriving bunched from the surface, etc
- With a simulation we looked at the effects of just one cause, train spacing, and how that related to queuing.
- To isolate the effects, we ran a simulation of the rail system under ideal conditions, and changed the service frequency of the lines.
- This simulation helped us understand the structural disadvantage that the Muni Metro's geographic design creates for us, independent of technical or human factors.

West Portal Queuing Simulation

Embarcadero Queuing Simulation

April 16, 2019, eastbound

Simulation Snapshot

Queues form at the bottlenecks at Van Ness and Embarcadero

SFMTA Train Control Program Update

M

Importance of the Relationship between Queueing and Headways

- Queueing occurs when the processing rate of a station (dwell + clearance time) is greater than the arrival rate (headway)
- Delay as a result of queueing can be broken up into two parts
 - Time Stopped Time a train spends stopped in a queue
 - Start Up Lost Time Time a train spends to accelerate to speed from a complete stop
 - Total Delay = Time Stopped + Start-Up Lost Time
- Delay from being in a queue can compound as more trains arrive and the queue gets longer
 - Train at the end of the queue needs to wait for all preceding trains to dwell at platform

M

Queuing & Headway Analysis

SFMTA Train Control Program Update

Off Peak Queueing Probability

 \mathbb{U}

100 second headway (simulated)

*simulated, under ideal conditions

Ē

90 second headway (simulated)

*simulated, under ideal conditions

80 second headway (simulated)

*simulated, under ideal conditions

70 second headway (simulated)

*simulated, under ideal conditions

Ē

60 second headway (simulated)

*simulated, under ideal conditions

50 second headway (simulated)

*simulated, under ideal conditions

Ē

SFMTA ATCS Loop Cable

NYC MTA CBTC Transponder

Project Scope

10-year upgrade and expansion of communications-based train control (CBTC) to improve Muni light rail service.

=;;

Upgrading to CBTC and expanding to the surface will provide these benefits to Muni light rail service:

Reduced Delays	Subway delays reduced by 20-25% through reduced train control failures and reduced congestion
Improved Maintainability	System monitors redundant components for faults so preventative action can be taken before service is affected
Consistent trip times	Expanding system to surface and integrating with traffic signals means trip times are less variable
Greater capacity	System enables better supervision and management of trains, addressing bottlenecks and increasing capacity

Upgrades loop-cable based system in subway to redundant, reliable wireless communications

Expands train control system supervision as well as automatic speed and signal enforcement to the surface

Replaces central computers, local computers, and onboard equipment with the latest technology

Connects to traffic signals to provide better train priority (trains will be less likely to encounter a red traffic signal)

Provides the TMC with greater flexibility and better tools to manage service; including adjustments to speed and dwell times to maintain trains on-headway or on-schedule

Improved information to train operator, including positions of upcoming switches, distance to next speed restriction / stop, current speed limit

Better tracking of work crews, non-revenue and historic vehicles for enhanced **Safety and monitoring from TMC**

Greater reliability and maintainability of train control system as well as monitoring of LRV and wayside equipment status

Provides for the long term support and upgrade of the system; holds supplier accountable for failures or issues affecting service

Phase 1: Third St (to MME) and Embarcadero Phase 2: Subways Phase 3: N Judah

Project Schedule | Planning Phase

Project Budget: Approx \$400 - 500 million Budget is under review and will be presented in January

To

Currently in Planning / Project Development Phase

Hired project planning & admin staff

Determined contracting structure

Hired technical consultants (WSP/Parsons)

Working on technical and commercial requirements

Working on project safety plan

Early 2022

Jan 2022

Installation

Technology & Facilities

This scenario uses the Ch 21 procurement process for the supplier and then a separate Chapter 6 RFP for the installer

ХХ Х

Questions?

SFMTA Train Control Program Update

M

S34

13