

VAN NESS AVENUE BUS RAPID TRANSIT

Bus Rapid Transit Project

Peter Gabancho

Project Manager III – Capital Programs & Construction – SFMTA Shari Tavafrashti

Principal Engineer – SFCTA

Project Purpose and Need

- Improve transit reliability, speed, connectivity and comfort
 - Separate autos from transit
 - Reduce delays associated with loading and unloading, and traffic signals
- Improve pedestrian comfort, amenities, and safety
- Enhance urban design and identity of Van Ness Avenue
- Accommodate safe multimodal circulation and access within the corridor

BRT Network Context

- Rail does not go to north side of city
- BRT network proposed to fill in rail gap...
 - ...and support local "rapid" + regional bus service

Van Ness Service

Existing Service: Route <u>47 / 49</u> • Route 47: Caltrain – North Beach

• Route 49: City College - Fort Mason

Proposed BRT:

- Routes 47 and 49 serve existing routes, and will operate as BRT in the Van Ness project area.
- Route 47 will use new 60 foot articulated hybrid buses.
- Rt. 49 will use new 60 foot trolley coaches.

Dedicated transit lane

- 2) Transit signal priority
- 3 Traffic signal optimization

- All-door boarding and low-floor vehicles
- 5 Pedestrian safety enhancements
- 6 H

High-quality Stations

Benefits of Van Ness BRT

- Improve transit travel times by up to 32%
- Improve transit reliability by up to 50%
- Increase transit boardings by up to 35%
- Maintain corridor person-throughput while increasing transit mode share
- Save up to 30% of daily route operating costs
- Improve multimodal safety, including for pedestrians

4.3 Min Differen

8.6

VN BRT Alts 3 and 4 (with Design

17.5

2007 Existing

 fravel Time Between Mission/Duboce

 Offramp and Clay Street (Min)

 7
 9

 8
 0

 7
 9

Bus (Route 49)

8.8 Automobile

9.3

Δlt 1

What is Important in Developing a BRT?

- Alternatives analysis is outlined in Chapter 10 of Environmental Impact Study / Environmental Impact Report
- 36 indicators grouped into categories based on Project Purpose and Need as well as issues of importance to stakeholders and decisionmakers
 - Transit Performance
 - Passenger Experience
 - Access and Pedestrian Safety
 - Urban Design/Landscape
 - System Performance
 - Environmental and Social Effects (includes tree preservation)
 - Operations and Maintenance
 - Construction and Capital Costs

Station Locations

- Routes 47 and 49 will provide BRT service upon entering the corridor
- Concern Regarding:
 - Traffic diversions
 - Left turn removals

- Transit stop consolidation
- Transfers and Route Connectivity
- Visual effects, including trees and landscaping

<u>Conceptual Visual Simulation</u> Center-Running BRT with Right Side Loading / Center Median and Limited Left Turns

LPA: Center-Running BRT with Right Side Loading/Center Median and Limited Left Turns

- Locally Preferred Alternative (LPA) recommendation selected by the SFMTA board in May 2012 and by the SFCTA board in June 2012
- Grove Street to Turk Street (Conceptual: Not to Scale)

LPA: Center-Running BRT with Right Side Loading/Center Median and Limited Left Turns

O'Farrell Street to Post Street (Conceptual: Not to Scale)

4

8

Ш

Major Elements

- 1) Boarding Island
- 2 Dedicated Bus way

10 11

29+00

56

7

- **3** Median Landscaping
- 4 Refuge
- 5 Curb Bulb
- 6 Catch Basin

- 7) Fire Hydrant
- 8 Curb Ramp

9

0

9 Pavement Rehab

2

- O Sewer Line Relocation
 - Water Main Reconstruction

3

12 Other Utilities

Separate but Related Projects

- Overhead Contact System / Poles / Lighting
- SFGo Traffic Signal System Upgrade / Replacement
- Vehicle Procurement
- Radio Replacement
- Sewer Work
- Water and Auxiliary Water Supply System
- Other Utilities

BRT Fleet Procurement

BRT Project Cost Summary

Estimated Cost \$125M

Committed Funding \$105-108M

• The estimate does not include the majority of the cost of replacement vehicles (local or federal), electrical overhead lines replacement, new streetlights / poles, and signal priority which are funded separately.

Project Schedule

Milestones

•	Feasibility Study Completed	Dec. 2006
•	DEIS/DEIR initiated	Sept. 2007
•	FTA Small Starts Approval	Dec. 2007
•	DEIS/DEIR Scoping Completed	April 2008
•	DEIS/DEIR public review	NovDec. 2011
•	Adoption of Locally Preferred	
	Alternative (LPA)	June 2012
•	Caltrans Project Report / Start 30% Design	Spring 2013
•	Final EIR/EIS – Record of Decision (ROD)	Fall 2013
•	30% Design complete	Spring 2014
•	100% Design complete	Summer 2015
•	Arrival of new transit vehicles	2015 - 2016
•	Construction period	Fall 2015–Winter 2017
•	Revenue Service	Spring 2018

