

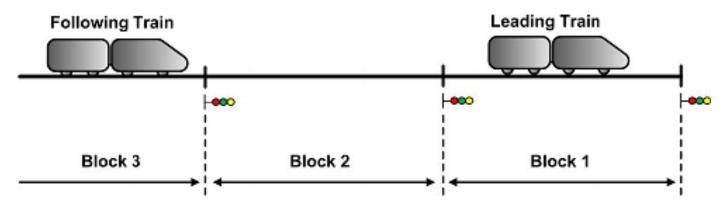
Dan Howard Muni Technology Systems Manager

What is Train Control?

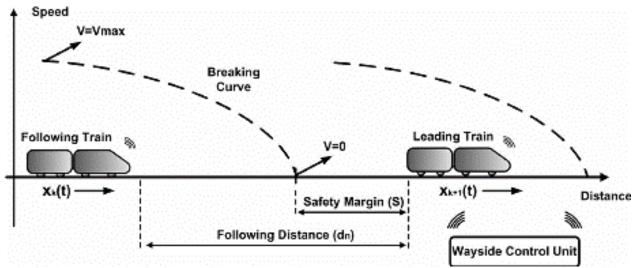
Primarily, train control is a **safety system** which is designed to prevent train-to-train collisions.

Generally, train control systems do not address the risk of collision between trains and other vehicles, bicycles, or pedestrians.

These capabilities are currently being researched

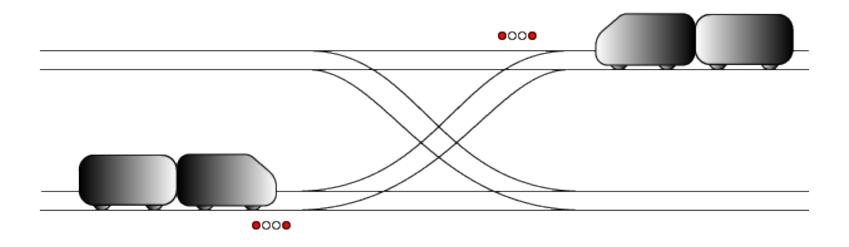

What is Train Control? (cont)

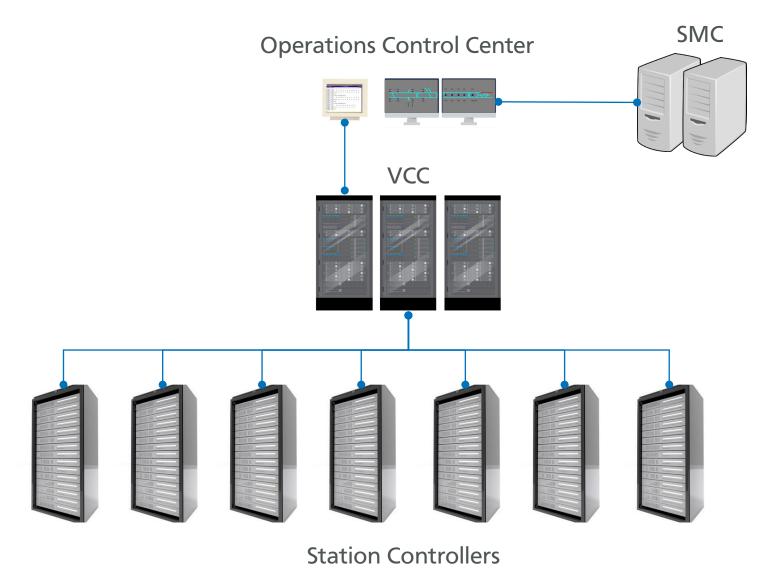
Secondarily, more modern train control systems can be used to manage rail service, giving operations staff the tools to monitor and adjust trains' speeds and dwell times to ensure the trains stay on schedule and maintain consistent headways.



Types of train control

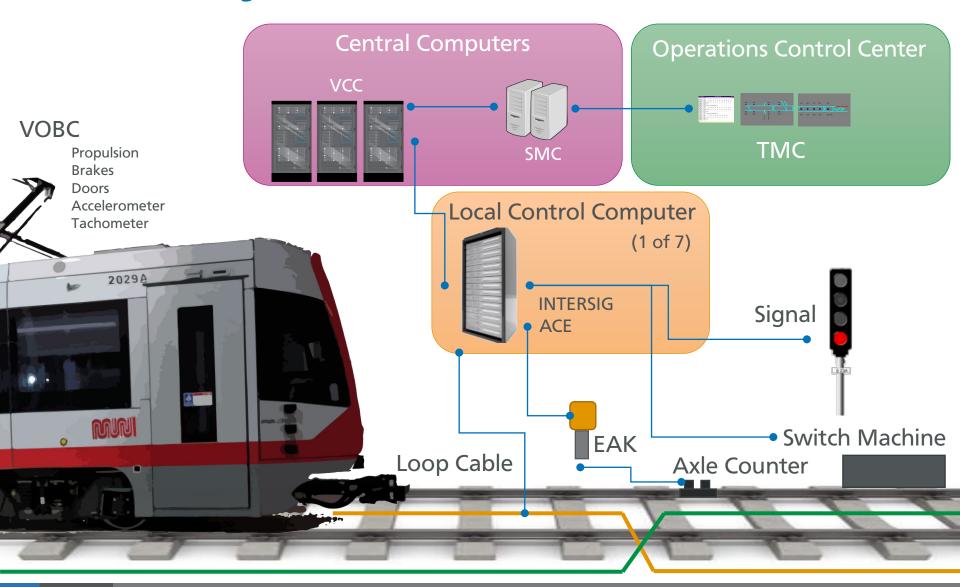
Fixed block


Moving block


What is Train Control? (cont)

In addition, we need to control movement through junctions (called 'interlockings').

This includes both occupancy control (fixed block and moving block) as well as switch position



ATCS System Overview

ATCS System Overview

VCC – Vital Control Computer

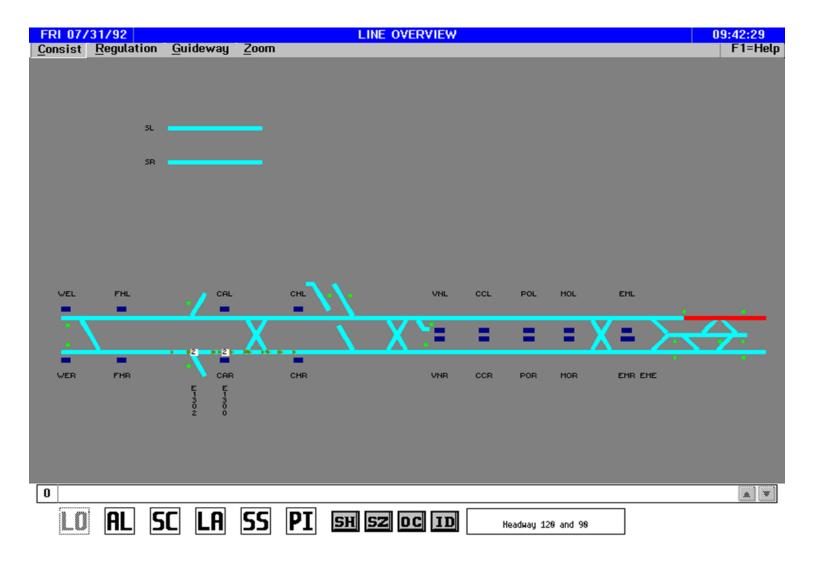
THU 08/0					ACC-C	CCO(Re	l1.30)					18:22:22
<u>A</u> uthority	<u>S</u> ystem											F1=Help
pbasgslr	.c 153											
11 . CPU1 :	13:53:09	C4	C6	C8	D2	D4	D6	D8	D10	D12	V2	V4
pbasgslr												
	13:53:09 8	STA UA	U1	DI	DI	DI	U3	U5	U2	DI	U5	U9
pbasgslr												
	13:53:09 F	RES										
pbasgslr												
	13:53:10 8	SIGNAL	STATUS	S/RESE	RVATI	ION						
pbasgslr							F 0				т.	
M1.CPU1:		V8	V12	V14	EZ	E4	E6	E8	T2	Т4	Т6	Т8
pbasgsir M1 CDD11 - 1	.C 184 13:53:10 8	STA DI	U1	DI	DI	DI	DI	DI	DI	DI	DI	DI
mi.cpoi. pbasgsir		DIM DI	UI.	וט	D1	υı	וט	וט	וט	DI	וט	D1
	.0 505 13:53:10 F	RES										
pbasgslr		LO										
	13:53:12 8	SIGNAL	STATUS	3/RESE	RVATI	ION						
pbasgslr												
M1 . CPU1 :		T10	T12	T14	T16	T20	T22	T24	T32	T18		
pbasgslr	.c 184											
M1 . CPU1 :	13:53:12 8	STA DI	DI	DI	DI	DI	DI	DI	DI	DI		
pbasgslr	.c 303											
	13:53:12 F	RES										
pbasgslr	.c 363											
PG 1												
									3			
									1			
									3			-
						ш			1			
												/ ·
						4.4				-		1/4
						/	/		, ,			
						8		N.A	1			/
						1		46	E 100	5	1	
						0808	CEO				111	

Station Controllers

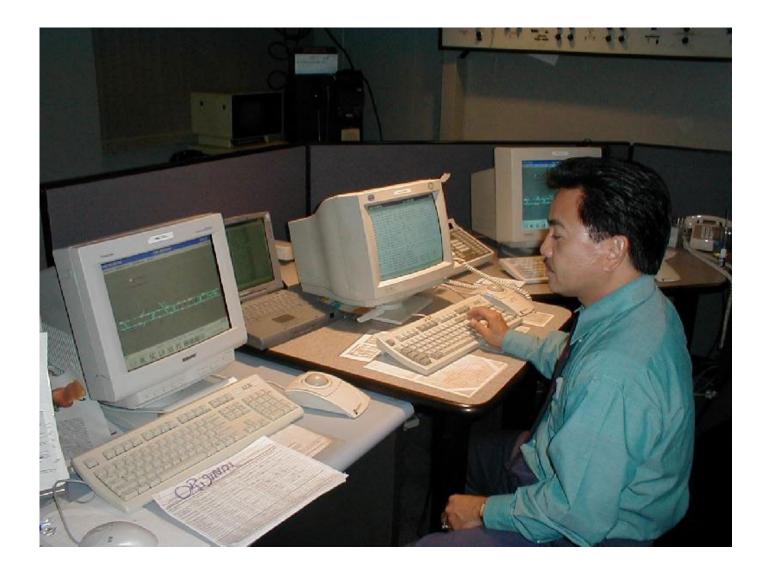
SFMTA Muni Metro Train Control

Carborne Equipment (VOBC)

SFMTA Muni Metro Train Control

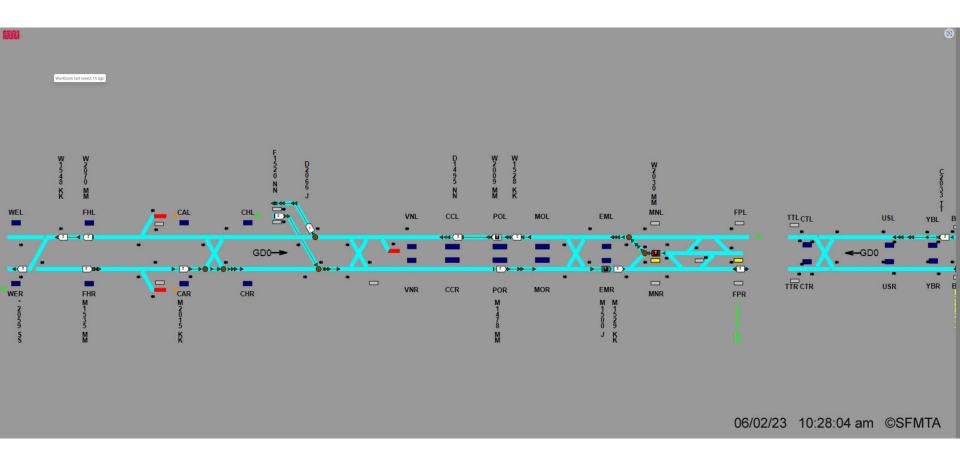

Wayside Equipment

SFMTA Muni Metro Train Control 1/24/2020 | 12


SMC – System Management Center


SFMTA Muni Metro Train Control 1/24/2020 | 13

OCC Control Center - Then

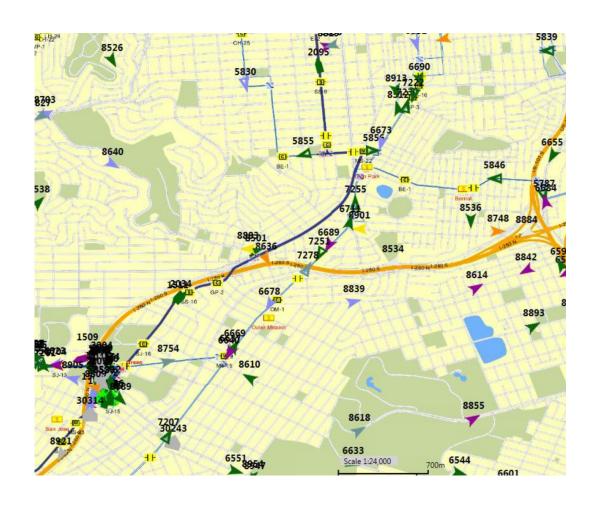

SFMTA Muni Metro Train Control

TMC Control Center - Now

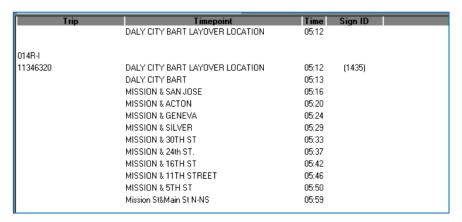
SFMTA Muni Metro Train Control

Managing Service

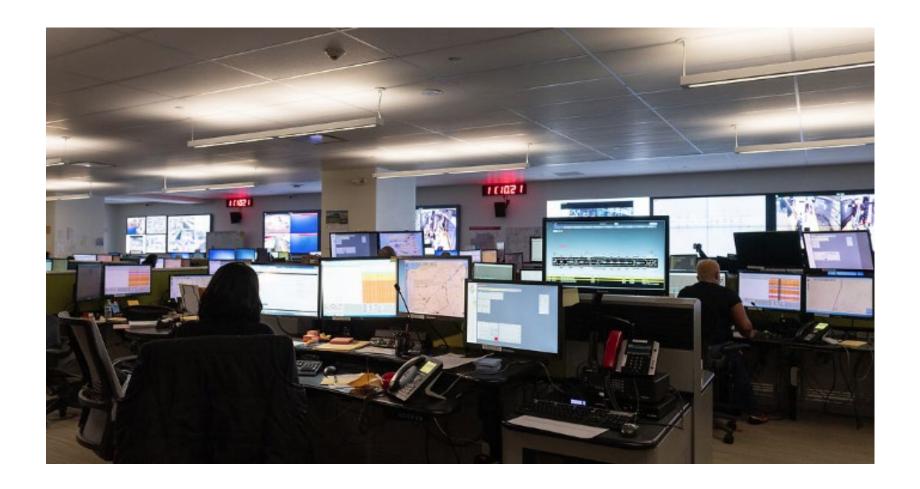
SFMTA Muni Metro Train Control 1/24/2020 | 16



Katelyn Stangl Transit Operations Systems Planner


What is a CAD-AVL system?

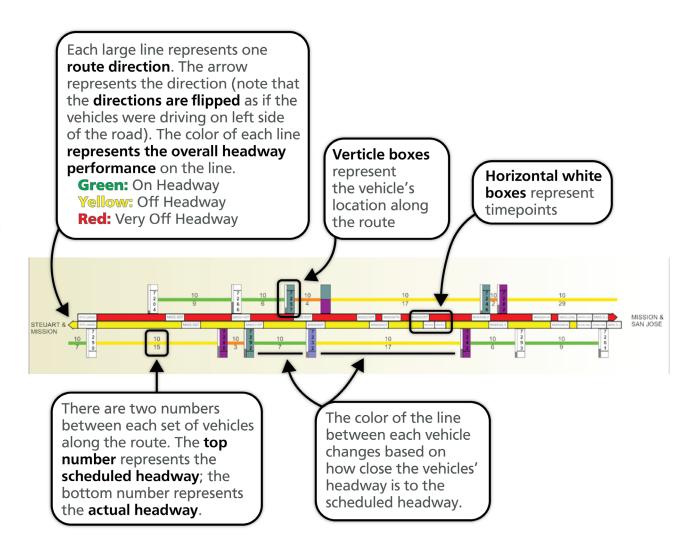

- Connects vehicles to scheduling & dispatching
- Allow for real-time monitoring of transit operations & adjustments to transit service
- Our system is called "OrbCAD"


What types of data does it include?

- Schedule data
- Automatic Vehicle Location Data (AVL)
- Incident log
- Automatic Passenger Counter Data (APC)

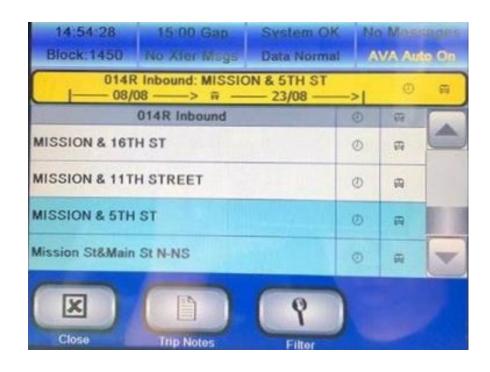
How do we use our CAD-AVL system in real-time?

Monitoring Transit Operations


Route & Direction Operator & Vehicle Assignments

On-Time Performance Vehicle Location

Route	CurRt	Dir	Oper	Block	VID	Vehicle Type	Status	Time	Dev	HDev	Delta	Last TP	Next TP	Intersection
014R	014R	OUTBOUND	5310	1430	6613	Motor Coach	NORMAL-N	10:56	1p	0		MISSSILV	MISSGNVA	MISSION & SILVER
014R	014R	INBOUND	2549	1431	6691	Motor Coach	GPSNA	06:01	NR	-			DE LONG	
014R	014R	OUTBOUND	4967	1432	6711	Motor Coach	NORMAL-N	10:57	0	1		MISS16ST	MISS24ST	MISSION & 16TH ST
014R	014R	INBOUND	3329	1433	6671	Motor Coach	NORMAL-N	10:53	0	0		MISS16ST	MISS11ST	MISSION & 16TH ST
014R			5216	1434	6689	Motor Coach	MISSEDRL	10:27	3	-		MISSMAI0	MORSLOWL	Mission St&Main St N-NS
014R	014R	INBOUND	3842	1435	6708	Motor Coach	NORMAL-N	10:56	1p	2		DC BART	MISS.S.J	DALY CITY BART
014R	014R	OUTBOUND	2390	1436	6615	Motor Coach	NORMAL-N	10:54	-1p	4		MISSMAI0	MISS.5ST	Mission St&Main St N-NS
014R	014R	INBOUND	4936	1437	6667	Motor Coach	LAYOVER	10:54	0p	0		MISSMAI0	MISSMAI0	Mission St&Main St N-NS
014R	014R	OUTBOUND	4659	1438	6618	Motor Coach	LAYOVER	10:50	QD	-1		DE LONG	DE LONG	DALY CITY BART LAYOVER LOCATION
014R	014R	OUTBOUND	5201	1439	6633	Motor Coach	GAP-L	10:51	-5p	-5		MISSMAI0	MISS.5ST	Mission St&Main St N-NS
014R	014R	INBOUND	5550	1440	6653	Motor Coach	LAYOVER	10:47	0p	1		MISSMAI0	MISSMAI0	Mission St&Main St N-NS
014R	014R	INBOUND	5466	1441	6614	Motor Coach	NORMAL-L	10:52	-5p	4		MISS11ST	MISS.5ST	MISSION & 11TH STREET
014R	014R	INBOUND	6043	1442	6647	Motor Coach	NORMAL-N	10:53	2p	2		MISS24ST	MISS16ST	MISSION & 24th ST.
014R			0	1443	0	Unknown	LOGOFF	10:15	0	-		FLNGARAG		FLYNN-GARAGE
014R	014R	OUTBOUND	5280	1444	6684	Motor Coach	NORMAL-N	10:51	-2p	-2		MISS16ST	MISS24ST	MISSION & 16TH ST
014R			5997	1445	6706	Motor Coach	DEADHEAD	10:47	q0	-		MORSLOWL	MORSLOWL	Morse St&Lowell St S-NS/BZ
014R	014R	OUTBOUND	6532	1446	6660	Motor Coach	NORMAL-E	10:53	1p	3		MISSFLNY	DC BART	MISSION & FLOURNOY
014R	014R	INBOUND	6604	1447	6668	Motor Coach	NORMAL-L	10:47	-5p	-2		MISS.5ST	MISSMAI0	MISSION & 5TH ST
014R	014R	INBOUND	3090	1448	6637	Motor Coach	NORMAL-N	10:56	-2	-2		MISSGNVA	MISSSILV	MISSION & GENEVA
014R	014R	INBOUND	5540	1449	6674	Motor Coach	NORMAL-N	10:51	1p	-1		MISSSILV	MISS30ST	MISSION & SILVER
014R	014R	INBOUND	2147	1450	6664	Motor Coach	NORMAL-L	10:57	-8p	-4		MISS.5ST	MISSMAI0	MISSION & 5TH ST


Headway Management

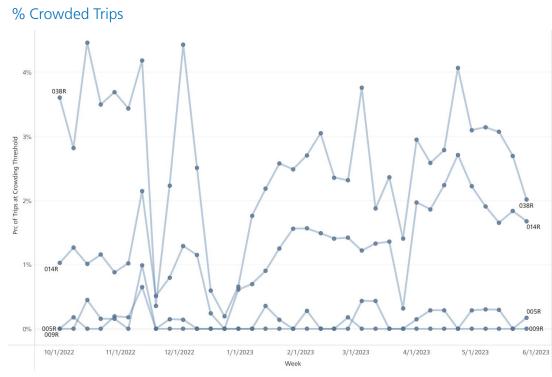
Instead of using a static schedule, vehicle departures are dynamically timed to maintain a consistent spacing along the route (i.e. a bus arrives at a stop every 10 minutes)

CAD-AVL On Transit Vehicles

- Send alerts to operators
- Show operator trip notes, directions
- Operators can communicate with controllers – send emergency alarms

How do we use the data created by the CAD-AVL system?

All data is archived


Data is analyzed

Data is used for transit operations, service planning, and, & Muni Forward

Crowding, vehicle capacity, & service planning

- Use archived APC data to calculate how many people are on board the vehicle
- Compare vehicle load to vehicle capacity
- Identify trips or route segments where the vehicle is crowded

https://www.sfmta.com/reports/percent-daily-muni-trips-crowded-route-and-month

Vehicle Speeds & Muni Forward

Use archived AVL data to calculate how fast transit vehicles are traveling per street block

Check out more of our data analysis work at sfmta.com

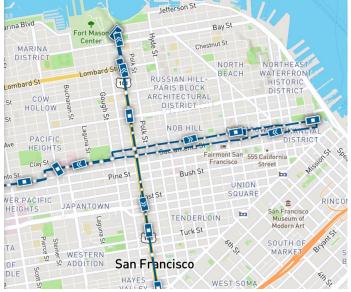
https://www.sfmta.com/muni-data

Ossmand Ruano Customer Information Systems Planner

What is CIS?

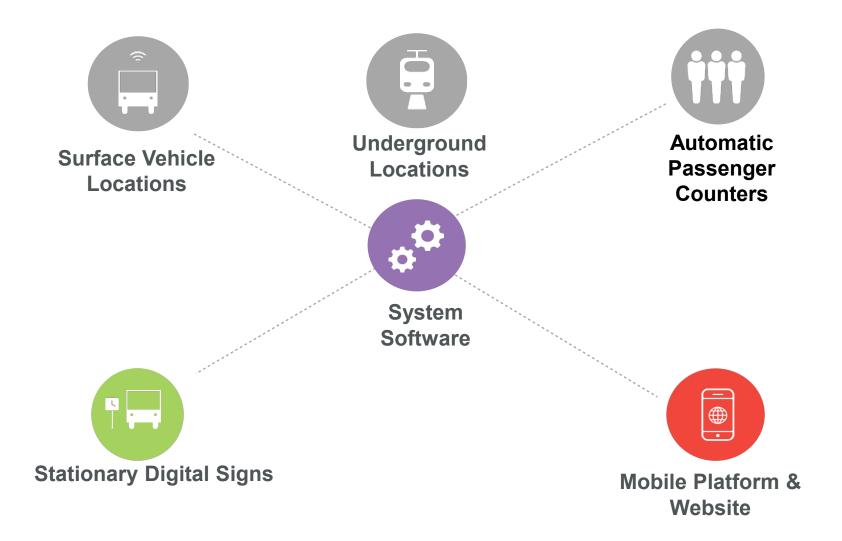
Our Customer Information System (CIS) is a real-time transit information system, designed to provide customers with up-to-date Muni transit information.

Customer Information System 6/28/2023 | 29


Background

- In 1999, San Francisco piloted the first U.S. real-time information system.
- Since then, the technology and transportation landscape has rapidly evolved.
- Next-Gen CIS project began in 2020 with a focus on upgrading the CIS system.

Next-Gen CIS



Next-Gen CIS

How is CIS data generated?

CIS Data Third-party Apps SFMTA Systems Prediction data Data is **CIS** predictions is made generated by a are generated available for variety of by a computer third-party **SFMTA** systems. algorithm. apps.

SFMTA Customer Information System

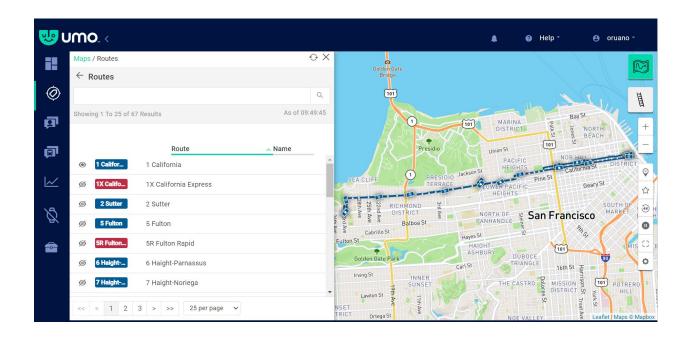
Next-Gen CIS: Stationary Signs

- New larger Liquid Crystal Displays (LCDs) at Muni shelters and stations, replacing existing signs and expanding real-time information coverage.
- Over halfway completion on the installation of new shelter signs.

Next-Gen CIS: Muni Mobile

Trip Planner

- Point-to-point directions, vehicle arrival times and other new customer information
- Live trip tracking to inform customer of changes in journey
- Customer configurable for language, accessibility and service preferences


Upgraded MuniMobile App

- Provides all-in-one mobile ticketing and trip planning functionality for transit and multimodal services
- Automatically reflects real-time service changes

How do we use CIS?

- Monitor routes/predictions
- Create rider messages/alerts

Customer Information System 6/28/2023 | 36