

Muni Metro Train Control System

Dan Howard Muni Technology Systems Manager

What makes great subway service?

Mass transit works best when it takes you from where you are to where you want to go more easily, reliably, and cheaply than other modes.

Dedicated right of way	High frequencies	Reliable	Accessible
Gets everything and everyone out of the way, permits high speeds and low incidence of disruption	You can just wander into the system with confidence your wait will be short and your connections will be plentiful	Passengers are confident they know the length of time their trip will take	The system is easily navigable— people of all abilities and backgrounds understand how to use the system

Why Are There So Many Subway Delays?

System delays can be categorized into two types: acute delays caused by some sort of emergent event, and chronic congestion where trains are 'stuck in traffic.' **Types of Subway Delays Acute Delays** Vehicle Breakdowns Infrastructure Failures Intruders/Falls/Dogs **Medical**/Police **Emergencies Communication Failures Failed Entries ATCS Computer Failures ATCS Infrastructure** Failures

Chronic Congestion Subway congestion Bunching Non-Communicating Trains Street congestion

> Green: Train control related Gold: Maintenance related

Gray: Outside of Muni control

Chronic Congestion: Throughput

Subway Throughput (PM Peak)

Day

Case Study: Communication Failure

A 15-minute timeout causes about 2 ¹/₂ hours of residual congestion: this results in about 10 train-hours of delay

178	CHR	1		
179	CHR			
189	Null			
192	Null			
193	Null			
194	Null			
195	Null			
196	Null			
199	Null			
200	Null			
202	Null			
203	Null			
204	Null			
205	Null			
206	Null			
207	Null			
208	Null			
209	Null			
210	Null			
212	Null			
213	Null			
214	Null			
215	Null			
217	Null			
218	Null			
219	Null			
220	Null			
221	Null			
222	Null			
223	Null			
225	Null			
226	Null			
227	Null			
231	VNR			
232	VND			

M

Non Communicating Trains

Frequency of Timeouts/NCTs

Average NCTs / Day

Case Study: Central Computer Failure

Loss of communication for about 1 hour causes another 2 hours of residual congestion: this results in about 30 ¹/₄ train-hours of delay

02/28/19 09:29:32 am ©SFMTA

What are the key reasons for poor train control system performance?

The present system was rolled out in the 1990s—it experienced significant issues then, and continues to cause headaches today

Three entry	Twenty-year-old	Rigid	Congestion
portals	system	infrastructure	
Multiplies the opportunity for system failures, makes systemic management of entire rail system complex	Components fail regularly, technology has significant capacity issues, fewer and fewer people have expertise to understand system	Extremely unforgiving system design, system is slow to come back up and results in delays that are disproportionate to significance of initial failure	We are operating at (or even above) capacity of the train control system, leaves zero room for error

OCC Control Center - Then

TMC Control Center - Now

If it's so bad, why use it?

- The ATCS provides safer, more efficient train movements in the subway than if we were to operate without it.
- It provides significant safety features that prevent collisions
 - Fallback mode is "stop everything"—good for safety, but false-positives are bad for operations
- It provides substantial efficiencies for vehicle throughput, even if it could be better
 - 45 trains/hour is maximum today (ideally)
 - 25 trains/hour was maximum throughput before ATCS

Modernizing the train control system will provide tangible benefits to riders by reducing delays.

Towards the future

Modern	Better	Traffic Signal	Supervision
Equipment	Software	Coordination	Everywhere
New systems use modern standards like WiFi and cellular, provide redundant communication to keep trains connected. New equipment is less failure- prone than today.	Better software will allow for increases in capacity through more efficient operations. Software can also predict faults to reduce delay-causing failures in service.	Train control system communicates with traffic signals so trains don't get stopped by red lights.	A system-wide train control allows trains to enter system at yards, cutting out portal entry delays. It also permits better sequencing on the surface to avoid bunches/gaps.

Next Steps

Summer 2019	Train control upgrade strategy; provides a plan for future upgrades and investments in train control
Fall 2019	Possible operational / service plan adjustments targeting Metro congestion
Winter 2020	RFP for new CBTC on surface and subway
Spring 2020	Incremental adjustments to ATCS for improved performance
Summer 2020	Activation of West Portal Crossover
2023	Potential delivery date for new train control system

Questions?

